
So You Want to Learn to
Program?

James M. Reneau, M.S.
Assistant Professor

Shawnee State University
Portsmouth Ohio USA

http://www.basicbook.org

James M. Reneau
P.O. Box 278

Russell, Kentucky 41169-2078 USA

Book Version: 20100909a
For BASIC-256 Version 0.9.6.35 or later

So You Want to Learn to Program?

James M. Reneau, M.S. - jim@renejm.com

Copyright C) 2010
James Martel Reneau
P.O. Box 278 – Russell KY 41169-0278 USA

The work released under Creative Commons Attribution-Noncommercial-
Share Alike 3.0 United States License. See http://creativecommons.org for
more information.

Under this license you are free:
• to Share — to copy, distribute and transmit the work

Under the following conditions:
• Attribution — You must attribute the work or any fragment of the work to the author

(but not in any way that suggests that they endorse you or your use of the work).
• Noncommercial — You may not use this work for commercial purposes.
• Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.

mailto:jim@renejm.com

Page i

Table of Contents
Chapter 1: Meeting BASIC-256 – Say Hello.............1

The BASIC-256 Window:...1
Menu Bar:...2
Tool Bar:...3
Program Area:...3
Text Output Area:...4
Graphics Output Area:..4

Your first program – The say statement:....................................4
BASIC-256 is really good with numbers – Simple Arithmetic:......7
Another use for + (Concatenation):..9
The text output area - The print statement:.............................11
What is a “Syntax error”:...12

Chapter 2: Drawing Basic Shapes........................13
Drawing Rectangles and Circles:..13
Saving Your Program and Loading it Back:...............................22
Drawing with Lines:..23
Setting Individual Points on the Screen:...................................26

Chapter 3: Sound and Music...............................31
Sound Basics – Things you need to know about sound:............31
Numeric Variables:...36

Chapter 4: Thinking Like a Programmer..............41
Pseudocode:...41
Flowcharting:..44

Flowcharting Example One:..45
Flowcharting Example Two:..46

Chapter 5: Your Program Asks for Advice............49

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page ii

Another Type of Variable – The String Variable:.......................49
Input – Getting Text or Numbers From the User:......................50

Chapter 6: Decisions, Decisions, Decisions..........57
True and False:...57
Comparison Operators:..57
Making Simple Decisions – The If Statement:...........................59
Random Numbers:...61
Logical Operators:..62
Making Decisions with Complex Results – If/End If:..................65
Deciding Both Ways – If/Else/End If:...68
Nesting Decisions:..69

Chapter 7: Looping and Counting - Do it Again and
Again..73

The For Loop:...73
Do Something Until I Tell You To Stop:.....................................77
Do Something While I Tell You To Do It:...................................79
Fast Graphics:..82

Chapter 8: Custom Graphics – Creating Your Own
Shapes..87

Fancy Text for Graphics Output:...87
Resizing the Graphics Output Area:..90
Creating a Custom Polygon:...92
Stamping a Polygon:..94

Chapter 9: Subroutines – Reusing Code.............103
Labels and Goto:..103
Reusing Blocks of Code – The Gosub Statement:....................106

Chapter 10: Mouse Control – Moving Things
Around..115

Tracking Mode:...115

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page iii

Clicking Mode:..117

Chapter 11: Keyboard Control – Using the Keyboard
to Do Things..125

Getting the Last Key Press:..125

Chapter 12: Images, WAVs, and Sprites.............133
Images From a File:..133
Playing Sounds From a WAV file:..136
Moving Images - Sprites:..139

Chapter 13: Arrays – Collections of Information. 149
One-Dimensional Arrays of Numbers:.....................................149
Arrays of Strings:..155
Assigning Arrays:...156
Sound and Arrays:..157
Graphics and Arrays:..159
Advanced - Two Dimensional Arrays:.....................................163
Really Advanced - Array Sizes:...164
Really Really Advanced - Resizing Arrays:..............................166

Chapter 14: Mathematics – More Fun With
Numbers..173

New Operators:..173
Modulo Operator:...173
Integer Division Operator:..176
Power Operator:...177
New Integer Functions:...179
New Floating Point Functions:..180
Advanced - Trigonometric Functions:.....................................181

Cosine:..183
Sine:...183
Tangent:...185
Degrees Function:..185

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page iv

Radians Function:...185
Inverse Cosine:...186
Inverse Sine:...186
Inverse Tangent:...187

Chapter 15: Working with Strings.....................193
The String Functions:...193

String() Function:..194
Length() Function:..194
Left(), Right() and Mid() Functions:...195
Upper() and Lower() Functions:..197
Instr() Function:..198

Chapter 16: Files – Storing Information For Later.
...203

Reading Lines From a File:...203
Writing Lines to a File:..207
Read() Function and Write Statement:...................................211

Chapter 17: Stacks, Queues, Lists, and Sorting..215
Stack:...215
Queue:...218
Linked List:...221
Slow and Inefficient Sort - Bubble Sort:..................................228
Better Sort – Insertion Sort:..231

Chapter 18 – Runtime Error Trapping................235
Error Trap:..235
Finding Out Which Error:..236
Turning Off Error Trapping:..239

Chapter 19: Database Programming..................241
What is a Database:...241
The SQL Language:..241
Creating and Adding Data to a Database:..............................242

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page v

Retrieving Information from a Database:...............................248

Chapter 20: Connecting with a Network............253
Socket Connection:..253
A Simple Server and Client:..254
Network Chat:..257

Appendix A: Loading BASIC-256 on your PC or USB
Pen Drive...267

1 – Download:...267
2 – Installing:..270
3 – Starting BASIC-256...275

Appendix B: Language Reference - Statements..277
circle – Draw a Circle on the Graphics Output Area (2)...........277
changedir – Change Your Current Working Directory (16)......277
clg – Clear Graphics Output Area (2)......................................278
clickclear – Clear the Last Mouse Click (10)............................278
close – Close the Currently Open File (16)..............................278
cls – Clear Text Output Window (1)..279
color or colour– Set Color for Drawing (2)...............................279
dbclose (19)...279
dbcloseset (19)..280
dbexecute (19)...280
dbopen (19)...280
dbopenset (19)...280
decimal ()...281
dim – Dimension a New Array (13)...281
do / until – Do / Until Loop (7)...281
end – Stop Running the Program (9)......................................282
fastgraphics – Turn Fast Graphics Mode On (8)......................282
font – Set Font, Size, and Weight (8)......................................282
for/next – Loop and Count (7)...283

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page vi

goto – Jump to a Label (9)..283
gosub/return – Jump to a Subroutine and Return (9)..............283
graphsize – Set Graphic Display Size (8)................................284
if then – Test if Something is True - Single Line(6)..................284
if then / end if – Test if Something is True – Multiple Line (6) 284
if then / else / end if – Test if Something is True – Multiple Line
with Else (6)...285
imgload – Load an image from a file and display (12)............285
input – Get a String Value from the User (7)...........................286
kill – Delete a File ()..286
line – Draw a Line on the Graphics Output Area (2)................286
netclose (20)..287
netconnect (20)..287
netlisten (20)..287
netwrite (20)..288
offerror (18)...288
onerror (18)..288
open – Open a file for Reading and Writing (16).....................288
pause – Pause the Program (7)...289
plot – Put a Point on the Graphics Output Area (2).................289
poly – Draw a Polygon on the Graphics Output Area (8).........289
print – Display a String on the Text Output Window (1)..........290
putslice – Display a Captured Part of the Graphics Output.....290
rect – Draw a Rectangle on the Graphics Output Area (2)......290
redim – Re-Dimension an Array (12).......................................291
refresh – Update Graphics Output Area (8).............................291
rem – Remark or Comment (2)...291
reset – Clear an Open File (16)...292
say – Use Text-To-Speech to Speak (1)..................................292
seek – Move the File I/O Pointer (16)......................................292
spritedim – Initialize Sprites for Drawing (12).........................293
spritehide – Hide a Sprite (12)..293

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page vii

spriteload – Load an Image File Into a Sprite (12)..................294
spritemove – Move a Sprite from Its Current Location (12).....294
spriteplace – Place a Sprite at a Specific Location (12)...........294
spriteshow – Show a Sprite (12)...295
spriteslice – Capture a Sprite (12)..295
sound – Play a beep on the PC Speaker (3)............................295
stamp – Put a Polygon Where You Want It (8)........................296
system – Execute System Command in a Shell......................296
text – Draw text on the Graphics Output Area (8)..................296
volume – Adjust Amplitude of Sound Statement.....................297
wavplay – Play a WAV audio file in the background (12)........297
wavstop – Stop playing WAV audio file (12)............................297
wavwait – Wait for the WAV to finish (12)...............................298
while / end while – While Loop (7)..298
write – Write Data to the Currently Open File (16)..................298
writeline – Write a Line to the Currently Open File (16)..........299

Appendix C: Language Reference - Functions... .301
abs – Absolute Value (14)...301
acos – Return the Arc-cosine (14)...302
asc – Return the Unicode Value for a Character (11)..............302
asin – Return the Arc-sine (14)...303
atan – Return the Arc-tangent (14)...303
ceil – Round Up (14)...304
chr – Return a Character (11)...305
clickb- Return the Mouse Last Click Button Status (10)..........305
clickx- Return the Mouse Last Click X Position (10)................306
clicky- Return the Mouse Last Click Y Position (10).................307
cos – Cosine (14)..307
currentdir – Current Working Directory (16)...........................308
day – Return the Current System Clock – Day (9)...................308
dbfloat – Get a Floating Point Value From a Database Set (19)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page viii

... 309
dbint – Get an Integer Value From a Database Set (19).........309
dbrow – Advance Database Set to Next Row (19)...................310
dbstring – Get a String Value From a Database Set (19)........310
degrees – Convert a Radian Value to a Degree Value (14).....311
eof – Allow Program to Check for End Of File Condition (16)...311
exists – Check to See if a File Exists (16)................................312
float – Convert a String Value to A Float Value (14)................312
floor – Round Down (14)...313
getcolor – Return the Current Drawing Color..........................314
getslice – Capture Part of the Graphics Output.......................314
graphheight – Return the Height of the Graphic Display (8)...315
graphwidth – Return the Width of the Graphic Display (8)......315
hour – Return the Current System Clock - Hour (9)................316
instr – Return Position of One String in Another (15)..............316
int – Convert Value to an Integer (14)....................................317
key – Return the Currently Pressed Keyboard Key (11)..........318
lasterror – Return Last Error (18)..319
lasterrorextra – Return Last Error Extra Information(18)........319
lasterrorline – Return Program Line of Last Error (18)............320
lasterrormessage – Return Last Error as String (18)...............320
left – Extract Left Sub-string (15)..320
length – Length of a String (15)..321
lower – Change String to Lower Case (15)..............................321
mid – Extract Part of a String (14)..322
minute - Return the Current System Clock - Minute (9)..........322
month - Return the Current System Clock - Month (9)............323
mouseb- Return the Mouse Current Button Status (10)..........324
mousex- Return the Mouse Current X Position (10)................325
mousey- Return the Mouse Current Y Position (10)................325
netaddress – What Is My IP Address (20)................................326
netdata – Is There Network Data to Read (20)........................326

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page ix

netread – Read Data from Network(20)..................................326
pixel – Get Color Value of a Pixel..327
radians – Convert a Degree Value to a Radian Value (16)......328
rand – Random Number (6)..328
read – Read a Token from the Currently Open File (16)..........329
readline – Read a Line of Text from a File (16).......................329
rgb – Convert Red, Green, and Blue Values to RGB (12).........330
right – Extract Right Sub-string (15).......................................330
second - Return the Current System Clock - Second (9).........331
sin – Sine (16)..332
size – Return the size of the open file (15).............................332
spritecollide – Return the Collision State of Two Sprites (12)..333
spriteh – Return the Height of Sprite (12)...............................333
Spritev – Return the Visible State of a Sprite (12)..................334
spritew – Return the Width of Sprite (12)...............................334
spritex – Return the X Position of Sprite (12)..........................335
spritey – Return the Y Position of Sprite (12)..........................335
string – Convert a Number to a String (14).............................336
tan – Tangent (16)..336
upper – Change String to Upper Case (15).............................337
year - Return the Current System Clock - Year (9)..................338

Appendix D: Language Reference – Operators and
Constants..339

Mathematical Operators:..339
Mathematical Constants or Values:..339
Color Constants or Values:...340
Logical Operators:..341
Logical Constants or Values:..341

Appendix E: Color Names and Numbers.............343

Appendix F: Musical Tones...............................345

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page x

Appendix G: Key Values....................................347

Appendix H: Unicode Character Values – Latin
(English)..349

Appendix I: Reserved Words.............................351

Appendix J: Error Numbers...............................353

Appendix K: Glossary.......................................357

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xi

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xii

Index of Programs
Program 1: Say Hello...4
Program 2: Say a Number...6
Program 3: Say the Answer...8
Program 4: Say another Answer..8
Program 5: Say Hello to Bob..9
Program 6: Say it One More Time..10
Program 7: Print Hello There...11
Program 8: Many Prints One Line..12
Program 9: Grey Spots..13
Program 10: Face with Rectangles..21
Program 11: Smiling Face with Circles...22
Program 12: Draw a Triangle...23
Program 13: Draw a Cube...25
Program 14: Use Plot to Draw Points...27
Program 15: Big Program - Talking Face......................................29
Program 16: Play Three Individual Notes.....................................32
Program 17: List of Sounds..32
Program 18: Charge!...36
Program 19: Simple Numeric Variables.......................................37
Program 20: Charge! with Variables..38
Program 21: Big Program - Little Fuge in G.................................39
Program 22: School Bus..43
Program 23: I Like Jim...49
Program 24: I Like?..51
Program 25: Math-wiz..53
Program 26: Fancy – Say Name...54
Program 27: Big Program - Silly Story Generator.........................55
Program 28: Compare Two Ages...59
Program 29: Coin Flip..62

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xiii

Program 30: Rolling Dice...67
Program 31: Coin Flip – With Else..69
Program 32: Big Program - Roll a Die and Draw It.......................70
Program 33: For Statement...73
Program 34: For Statement – With Step......................................74
Program 35: Moiré Pattern..75
Program 36: For Statement – Countdown....................................76
Program 37: Get a Number from 1 to 10.....................................78
Program 38: Do/Until Count to 10..78
Program 39: Loop Forever...79
Program 40: While Count to 10...80
Program 41: Kalidescope...83
Program 42: Big Program - Bouncing Ball....................................85
Program 43: Hello on the Graphics Output Area..........................87
Program 44: Re-size Graphics..91
Program 45: Big Red Arrow...93
Program 46: Fill Screen with Triangles..95
Program 47: One Hundred Random Triangles.............................98
Program 48: Big Program - A Flower For You.............................101
Program 49: Goto With a Label..103
Program 50: Text Clock...105
Program 51: Gosub..108
Program 52: Text Clock - Improved...110
Program 53: Big Program - Roll Two Dice Graphically................113
Program 54: Mouse Tracking...116
Program 55: Mouse Clicking..118
Program 56: Big Program - Color Chooser.................................122
Program 57: Read Keyboard..126
Program 58: Move Ball..129
Program 59: Big Program - Falling Letter Game........................131
Program 60: Imgload a Graphic...133
Program 61: Imgload a Graphic with Scaling and Rotation........135

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xiv

Program 62: Spinner with Sound Effect.....................................137
Program 63: Bounce a Ball with Sprite and Sound Effects.........140
Program 64: Sprite Collision..144
Program 65: Paddleball with Sprites..147
Program 66: One-dimensional Numeric Array............................149
Program 67: Bounce Many Balls..153
Program 68: Bounce Many Balls Using Sprites...........................155
Program 69: List of My Friends..156
Program 70: Assigning an Array With a List...............................157
Program 71: Space Chirp Sound..158
Program 72: Shadow Stamp..160
Program 73: Randomly Create a Polygon..................................162
Program 74: Grade Calculator...164
Program 75: Get Array Size...165
Program 76: Re-Dimension an Array...167
Program 77: Big Program - Space Warp Game..........................170
Program 78: The Modulo Operator..174
Program 79: Move Ball - Use Modulo to Keep on Screen............176
Program 80: Check Your Long Division......................................177
Program 81: The Powers of Two..178
Program 82: Difference Between Int, Ceiling, and Floor............180
Program 83: Big Program - Long Division..................................191
Program 84: The String Function...194
Program 85: The Length Function..195
Program 86: The Left, Right, and Mid Functions........................196
Program 87: The Upper and Lower Functions............................197
Program 88: The Instr Function...198
Program 89: Big Program - Radix Conversion............................200
Program 90: Read Lines From a File..204
Program 91: Clear File and Write Lines......................................208
Program 92: Append Lines to a File...211
Program 93: Big Program - Phone List.......................................213

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xv

Program 94: Stack...217
Program 95: Queue...220
Program 96: Linked List...228
Program 97: Bubble Sort...231
Program 98: Insertion Sort..234
Program 99: Simple Runtime Error Trap....................................235
Program 100: Runtime Error Trap - With Messages...................237
Program 101: Turning Off the Trap..239
Program 102: Create a Database..244
Program 103: Insert Rows into Database...................................247
Program 104: Update Row in a Database..................................248
Program 105: Selecting Sets of Data from a Database..............250
Program 106: Simple Network Server..254
Program 107: Simple Network Client...255
Program 108: Network Chat..259
Program 109: Network Tank Battle..265

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xvi

Index of Illustrations
Illustration 1: The BASIC-256 Screen...2
Illustration 2: BASIC-256 - New Dialog...5
Illustration 3: Color Names..17
Illustration 4: The Cartesian Coordinate System of the Graphics
Output Area...18
Illustration 5: Rectangle..18
Illustration 6: Circle...19
Illustration 7: Sound Waves...31
Illustration 8: Musical Notes..34
Illustration 9: Charge!..34
Illustration 10: First Line of J.S. Bach's Little Fuge in G................39
Illustration 11: School Bus...42
Illustration 12: Breakfast - Flowchart...46
Illustration 13: Soda Machine - Flowchart....................................47
Illustration 14: Compare Two Ages - Flowchart............................61
Illustration 15: Common Windows Fonts......................................90
Illustration 16: Big Red Arrow..92
Illustration 17: Equilateral Triangle..94
Illustration 18: Degrees and Radians...97
Illustration 19: Big Program - A Flower For You - Flower Petal
Stamp..100
Illustration 20: Right Triangle..182
Illustration 21: Cos() Function..183
Illustration 22: Sin() Function..183
Illustration 23: Tan() Function..185
Illustration 24: Acos() Function..186
Illustration 25: Asin() Function...187
Illustration 26: Atan() Function..187
Illustration 27: What is a Stack..216

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xvii

Illustration 28: What is a Queue..218
Illustration 29: Linked List...221
Illustration 30: Deleting an Item from a Linked List...................222
Illustration 31: Inserting an Item into a Linked List....................222
Illustration 32: Bubble Sort - Flowchart......................................229
Illustration 33: Insertion Sort - Step-by-step..............................232
Illustration 34: Entity Relationship Diagram of Chapter Database
..242
Illustration 35: Socket Communication......................................253
Illustration 36: BASIC-256 on Sourceforge.................................268
Illustration 37: Saving Install File...268
Illustration 38: File Downloaded..269
Illustration 39: Open File Warning...270
Illustration 40: Open File Security Warning................................271
Illustration 41: Installer - Welcome Screen................................272
Illustration 42: Installer - GPL License Screen............................273
Illustration 43: Installer - What to Install....................................274
Illustration 44: Installer - Where to Install..................................274
Illustration 45: Installer - Complete...275
Illustration 46: XP Start Button..276
Illustration 47: BASIC-256 Menu from All Programs...................276

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xviii

Acknowledgments:

Shout-outs go to all the people who have worked on the BASIC-256 project,
at Sourceforge. Most especially, Ian Larsen (aka: DrBlast) for creating the
BASIC-256 computer language and his original vision.

Dedications:

To my wife Nancy and my daughter Anna.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page xix

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 1

Chapter 1: Meeting BASIC-256 – Say
Hello.

This chapter will introduce the BASIC-256 environment using the print
and say statements. You will see the difference between commands
you send to the computer, strings of text, and numbers that will be
used by the program. We will also explore simple mathematics to
show off just how talented your computer is. Lastly you will learn what
a syntax-error is and how to fix them.

The BASIC-256 Window:

The BASIC-256 window is divided into five sections: the Menu Bar, Tool
Bar, Program Area, Text Output Area, and Graphics Output Area (see
Illustration 1: The BASIC-256 Screen below).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 2

Illustration 1: The BASIC-256 Screen

Menu Bar:

The menu bar contains several different drop down menus. These
menus include: “File”, “Edit”, “View”, “Run”, and “About”. The “File”
menu allows you to save, reload saved programs, print and exit. The
“Edit” menu allows you to cut, copy and paste text and images from
the program, text output, and graphics output areas. The “View”
menu will allow you to show or hide various parts of the BASIC-256
window. The “Run” menu will allow you to execute and debug your
programs. The “About” menu option will display a pop-up dialog with
information about BASIC-256 and the version you are using.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 3

Tool Bar:

The menu options that you will use the most are also available on the
tool bar.

• New – Start a new program

• Open – Open a saved program

• Save – Save the current program to the computer's hard disk drive

or your USB pen drive

• Run – Execute the currently displayed program

• Debug – Start executing program one line at a time

• Step – When debugging – go to next line

• Stop – Quit executing the current program

• Undo – Undo last change to the program.

• Redo – Redo last change that was undone.

• Cut – Move highlighted program text to the clipboard

• Copy – Place a copy of the highlighted program text on the

clipboard

• Paste – Insert text from the clipboard into program at current

insertion point

Program Area:

Programs are made up of instructions to tell the computer exactly what
to do and how to do it. You will type your programs, modify and fix
your code, and load saved programs into this area of the screen.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 4

Text Output Area:

This area will display the output of your programs. This may include
words and numbers. If the program needs to ask you a question, the
question (and what you type) will be displayed here.

Graphics Output Area:

BASIC-256 is a graphical language (as you will see). Pictures, shapes,
and graphics you will create will be displayed here.

Your first program – The say statement:

Let's actually write a computer program. Let us see if BASIC-256 will
say hello to us. In the Program Area type the following one-line
program:

say “hello”

Program 1: Say Hello

Once you have this program typed in, use the mouse, and click on

“Run” in the tool bar.

Did BASIC-256 say hello to you through the computer's speakers?

say expression

The say statement is used to make BASIC-256 read an
expression aloud, to the computer's speakers.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 5

“”

BASIC-256 treats letters, numbers, and punctuation that are
inside a set of double-quotes as a block. This block is called
a string.

 “Run” on the tool bar - or - “Run” then “Run” on the

menu

You must tell BASIC-256 when you want it to start executing
a program. It doesn't automatically know when you are
done typing your programming code in. You do this by

clicking on the “Run” icon on the tool bar or by clicking

on “Run” from the menu bar then selecting “Run” from the
drop down menu.

To clear out the program you are working on and completely start a

new program we use the “New” button on the tool bar. The new

button will display the following dialog box:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Illustration 2: BASIC-256 - New Dialog

Chapter 1: Meeting BASIC-256 – Say Hello. Page 6

If you are fine with clearing your program from the screen then click on

the “Yes” button. If you accidentally hit “New” and do

not want to start a new program then click on the

“Cancel” button.

“New” on the tool bar - or - “File” then “New” on the menu

The “New” command tells BASIC-256 that you want to clear
the current statements from the program area and start a
totally new program. If you have not saved your program to
the computer (Chapter 2) then you will lose all changes you
have made to the program.

Try several different programs using the say statement with
a string. Say hello to your best friend, have the computer
say your favorite color, have fun.

You can also have the say statement speak out numbers. Try the
following program:

say 123456789

Program 2: Say a Number

Once you have this program typed in, use the mouse, and click on

“Run” in the tool bar.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 7

Did BASIC-256 say what you were expecting?

numbers

BASIC-256 allows you to enter numbers in decimal format.
Do not use commas when you are entering large numbers.
If you need a number less than zero just place the negative
sign before the number.

Examples include: 1.56, 23456, -6.45 and .5

BASIC-256 is really good with numbers – Simple
Arithmetic:

The brain of the computer (called the Central Processing Unit or CPU
for short) works exclusively with numbers. Everything it does from
graphics, sound, and all the rest is done by manipulating numbers.

The four basic operations of addition, subtraction, multiplication, and
division are carried out using the operators show in Table 1.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 8

Operator Operation

+ Addition
expression1 + expression2

- Subtraction
expression1 - expression2

* Multiplication
expression1 * expression2

/ Division
expression1 / expression2

Table 1: Basic Mathematical Operators

Try this program and listen to the talking super calculator.

say 12 * (2 + 10)

Program 3: Say the Answer

The computer should have said “144” to you.

say 5 / 2

Program 4: Say another Answer

Did the computer say “2.5”?

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 9

+
-
*
/
()

The four basic mathematical operations: addition (+),
subtraction (-), division (/), and multiplication(*) work with
numbers to perform calculations. A numeric value is
required on both sides of these operators. You may also use
parenthesis to group operations together.

Examples include: 1 + 1, 5 * 7, 3.14 * 6 + 2, (1 + 2) * 3 and
5 - 5

Try several different programs using the say statement and
the four basic mathematical operators. Be sure to try all
four of them.

Another use for + (Concatenation):

The + operator also will add strings together. This operation is called
concatenation, or “cat” for short. When we concatenate we are joining
the strings together, like train cars, to make a longer string.

Let's try it out:

say "Hello " + "Bob."

Program 5: Say Hello to Bob

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 10

The computer should have said hello to Bob.

Try another.

say 1 + " more time"

Program 6: Say it One More Time

The + in the last example was used as the concatenate operator
because the second term was a string and the computer does not
know how to perform mathematics with a string (so it 'cats').

+ (concatenate)

Another use for the the plus sign (+) is to tell the computer
to concatenate (join) strings together. If one or both
operands are a string, concatenation will be performed; if
both operands are numeric, then addition is performed.

Try several different programs using the say statement and
the + (concatenate) operator. Join strings and numbers
together with other strings and numbers.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 11

The text output area - The print statement:

Programs that use the Text to Speech (TTS) say statement can be very
useful and fun but is is also often necessary to write information
(strings and numbers) to the screen so that the output can be read.
The print statement does just that. In the Program Area type the
following two-line program:

print “hello”
print “there”

Program 7: Print Hello There

Once you have this program typed in, use the mouse, and click on

“Run” in the tool bar. The text output area should now show “hello” on
the first line and “there” on the second line.

print expression
print expression;

The print statement is used to display text and numbers on
the text output area of the BASIC-256 window. Print
normally goes down to the next line but you may print
several things on the same line by using a ; (semicolon) at
the end of the expression.

The print statement, by default, advances the text area so that the
next print is on the next line. If you place a ; (semicolon) on the end
of the expression being printed, it will suppress the line advance so
that the next print will be on the same line.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 1: Meeting BASIC-256 – Say Hello. Page 12

cls
print “Hello ”;
print “there, ”;
print “my friend.”

Program 8: Many Prints One Line

cls

The cls statement clears all of the old displayed information
from the text output area.

Try several different programs using the print statement.
Use strings, numbers, mathematics, and concatenation.

What is a “Syntax error”:

Programmers are human and occasionally make mistakes. “Syntax
errors” are one of the types of errors that we may encounter. A
“Syntax error” is generated by BASIC-256 when it does not understand
the program you have typed in. Usually syntax errors are caused by
misspellings, missing commas, incorrect spaces, unclosed quotations,
or unbalanced parenthesis. BASIC-256 will tell you what line your error
is on and will even attempt to tell you where on the line the error is.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 13

Chapter 2: Drawing Basic Shapes.

In this chapter we will be getting graphical. You will learn how to draw
rectangles, circles, lines and points of various colors. These programs
will get more and more complex, so you will also learn how to save
your programs to long term storage and how to load them back in so
you can run them again or change them.

Drawing Rectangles and Circles:

Let's start the graphics off by writing a graphical program for our
favorite sports team, the “Grey Spots”. Their colors are blue and grey.

1 # c2_greyspots.kbs
2 # a program for our team - the grey spots
3 clg
4 color blue
5 rect 0,0,300,300
6 color grey
7 circle 149,149,100
8 say "Grey Spots, Grey Spots, Grey spots rule!"

Program 9: Grey Spots

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 14

Sample Output 9: Grey
Spots

Notice: Program listings from here on will have each line
numbered. DO NOT type in the line numbers when you are
entering the program.

Let's go line by line through the program above. The first line is called
a remark or comment statement. A remark is a place for the
programmer to place comments in their computer code that are
ignored by the system. Remarks are a good place to describe what
complex blocks of code is doing, the program's name, why we wrote a
program, or who the programmer was.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 15

#
rem

The # and rem statements are called remarks. A remark
statement allows the programmer to put comments about
the code they are working on into the program. The
computer sees the # or rem statement and will ignore all of
the rest of the text on the line.

On line two you see the clg statement. It is much like the cls
statement from Chapter 1, except that the clg statement will clear the
graphic output area of the screen.

clg

The clg statement erases the graphics output area so that
we have a clean place to do our drawings.

Line three contains the color statement. It tells BASIC-256 what color
to use for the next drawing action. You may define colors either by
using one of the eighteen standard color names or you may define one
of over 16 million different colors by mixing the primary colors of light
(red, green, and blue) together.

When you are using the numeric method to define your custom color
be sure to limit the values from 0 to 255. Zero (0) represents no light
of that component color and 255 means to shine the maximum. Bright
white is represented by 255, 255, 255 (all colors of light) where black
is represented by 0, 0, 0 (no colors at all). This numeric representation
is known as the RGB triplet. Illustration 3 shows the named colors and
their numeric values.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 16

color color_name
color red, green, blue
color RGB_number

color can also be spelled colour.

The color statement allows you to set the color that will be
drawn next. You may follow the color statement with a
color name (black, white, red, darkred, green, darkgreen,
blue, darkblue, cyan, darkcyan, purple, darkpurple, yellow,
darkyellow, orange, darkorange, grey/gray,
darkgrey/darkgray), with three numbers (0-255)
representing how much red, blue, and green should be used
to make the color, or with a single value representing red *
256 ^2 + green * 256 + green.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 17

Illustration 3: Color Names

The graphics display area, by default is 300 pixels wide (x) by 300
pixels high (y). A pixel is the smallest dot that can be displayed on
your computer monitor. The top left corner is the origin (0,0) and the
bottom right is (299,299). Each pixel can be represented by two
numbers, the first (x) is how far over it is and the second (y) represents
how far down. This way of marking points is known as the Cartesian
Coordinate System to mathematicians.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 18

Illustration 4: The Cartesian
Coordinate System of the
Graphics Output Area

The next statement (line 4) is rect. It is used to draw rectangles on
the screen. It takes four numbers separated by commas; (1) how far
over the left side of the rectangle is from the left edge of the graphics
area, (2) how far down the top edge is, (3) how wide and (4) how tall.
All four numbers are expressed in pixels (the size of the smallest dot
that can be displayed).

Illustration 5: Rectangle

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 19

You can see the the rectangle in the program starts in the top left
corner and fills the graphics output area.

rect x, y, width, height

The rect statement uses the current drawing color and
places a rectangle on the graphics output window. The top
left corner of the rectangle is specified by the first two
numbers and the width and height is specified by the other
two arguments.

Line 6 of Program 9 introduces the circle statement to draw a circle. It
takes three numeric arguments, the first two represent the Cartesian
coordinates for the center of the circle and the third the radius in
pixels.

Illustration 6:
Circle

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 20

circle x, y, radius

The circle statement uses the current drawing color and
draws a filled circle with its center at (x, y) with the specified
radius.

Can you create a graphic screen using colors, rectangles and
circles for your school or favorite sports team?

Here are a couple of sample programs that use the new statements
clg, color, rect and circle. Type the programs in and modify them.
Make them a frowning face, alien face, or look like somebody you
know.

1 # c2_rectanglesmile.kbs
2
3 # clear the screen
4 clg
5
6 # draw the face
7 color yellow
8 rect 0,0,299,299
9
10 # draw the mouth
11 color black
12 rect 100,200,100,25
13
14 # put on the eyes
15 color black
16 rect 75,75,50,50

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 21

17 rect 175,75,50,50
18
19 say "Hello."

Program 10: Face with Rectangles

Sample Output 10:
Face with Rectangles

1 # c2_circlesmile.kbs
2
3 # clear the screen
4 clg
5 color white
6 rect 0,0,300,300
7
8 # draw the face
9 color yellow
10 circle 150,150,150
11
12 # draw the mouth
13 color black
14 circle 150,200,70
15 color yellow
16 circle 150,150,70

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 22

17
18 # put on the eyes
19 color black
20 circle 100,100,30
21 circle 200,100,30

Program 11: Smiling Face with Circles

Sample Output 11: Smiling
Face with Circles

Combine rectangles and circles to create your own face
graphic.

Saving Your Program and Loading it Back:

Now that the programs are getting more complex, you may want to
save them so that you can load them back in the future.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 23

You may store a program by using the Save button on the tool bar
or Save option on the File menu. A dialog will display asking you for a
file name, if it is a new program, or will save the changes you have
made (replacing the old file).

If you do not want to replace the old version of the program and you
want to store it using a new name you may use the Save As option on
the File menu to save a copy with a different name.

To load a previously saved program you would use the Open button

 on the tool bar or the Open option on the File menu.

Drawing with Lines:

The next drawing statement is line. It will draw a line one pixel wide,
of the current color, from one point to another point. Program 12
shows an example of how to use the line statement.

1 # c2_triangle.kbs - draw a triangle
2
3 clg
4 color black
5
6 line 150, 100, 100, 200
7 line 100, 200, 200, 200
8 line 200, 200, 150, 100

Program 12: Draw a Triangle

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 24

Sample Output 12: Draw a Triangle

line start_x, start_y, finish_x, finish_y

Draw a line one pixel wide from the starting point to the
ending point, using the current color.

Use a piece of graph-paper to draw other shapes and then
write a program to draw them. Try a right triangle,
pentagon, star, or other shapes.

The next program is a sample of what you can do with complex lines.
It draws a cube on the screen.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 25

1 # c2_cube.kbs - draw a cube
2
3 clg
4 color black
5
6 # draw back square
7 line 150, 150, 150, 250
8 line 150, 250, 250, 250
9 line 250, 250, 250, 150
10 line 250, 150, 150, 150
11
12 # draw front square
13 line 100, 100, 100, 200
14 line 100, 200, 200, 200
15 line 200, 200, 200, 100
16 line 200, 100, 100, 100
17
18 # connect the corners
19 line 100, 100, 150, 150
20 line 100, 200, 150, 250
21 line 200, 200, 250, 250
22 line 200, 100, 250, 150

Program 13: Draw a Cube

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 26

Sample Output 13: Draw a Cube

Setting Individual Points on the Screen:

The last graphics statement covered in this chapter is plot. The plot
statement sets a single pixel (dot) on the screen. For most of us these
are so small, they are hard to see. Later we will write programs that
will draw groups of pixels to make very detailed images.

1 # c2_plot.kbs - use plot to draw points
2
3 clg
4
5 color red
6 plot 99,100
7 plot 100,99
8 plot 100,100
9 plot 100,101

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 27

10 plot 101,100
11
12 color darkgreen
13 plot 200,200

Program 14: Use Plot to Draw Points

Sample Output 14: Use Plot to Draw
Points (circled for emphasis)

plot x, y

Changes a single pixel to the current color.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 28

At the end of each chapter there will be one or more big
programs for you to look at, type in, and experiment with.
These programs will contain only topics that we have
covered so far in the book.

This “Big Program” takes the idea of a face and makes it
talk. Before the program will say each word the lower half of
the face is redrawn with a different mouth shape. This
creates a rough animation and makes the face more fun.

1 # c2_talkingface.kbs
2 # draw face background with eyes
3 color yellow
4 rect 0,0,300,300
5 color black
6 rect 75,75,50,50
7 rect 175,75,50,50
8
9 #erase old mouth
10 color yellow
11 rect 0,150,300,150
12 # draw new mouth
13 color black
14 rect 125,175,50,100
15 # say word
16 say "i"
17
18 color yellow
19 rect 0,150,300,150
20 color black
21 rect 100,200,100,50
22 say "am"
23
24 color yellow

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 29

25 rect 0,150,300,150
26 color black
27 rect 125,175,50,100
28 say "glad"
29
30 color yellow
31 rect 0,150,300,150
32 color black
33 rect 125,200,50,50
34 say "you"
35
36 color yellow
37 rect 0,150,300,150
38 color black
39 rect 100,200,100,50
40 say "are"
41
42 color yellow
43 rect 0,150,300,150
44 color black
45 rect 125,200,50,50
46 say "my"
47
48 # draw whole new face with round smile.
49 color yellow
50 rect 0,0,300,300
51 color black
52 circle 150,175,100
53 color yellow
54 circle 150,150,100
55 color black
56 rect 75,75,50,50
57 rect 175,75,50,50
58 say "friend"

Program 15: Big Program - Talking Face

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 2: Drawing Basic Shapes. Page 30

Sample Output 15: Big Program -
Talking Face

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 31

Chapter 3: Sound and Music.

Now that we have color and graphics, let's add sound and make some
music. Basic concepts of the physics of sound, numeric variables, and
musical notation will be introduced. You will be able to translate a
tune into frequencies and durations to have the computer synthesize a
voice.

Sound Basics – Things you need to know about
sound:

Sound is created by vibrating air striking your ear-drum. These
vibrations are known as sound waves. When the air is vibrating quickly
you will hear a high note and when the air is vibrating slowly you will
hear a low note. The rate of the vibration is called frequency.

Illustration 7: Sound Waves

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 32

Frequency is measured in a unit called hertz (Hz). It represents how
many cycles (ups and downs) a wave vibrates through in a second. A
normal person can here very low sounds at 20 Hz and very high
sounds at 20,000 Hz. BASIC-256 can produce tones in the range of
50Hz to 7000Hz.

Another property of a sound is it's length. Computers are very fast and
can measure times accurately to a millisecond (ms). A millisecond
(ms) is 1/1000 (one thousandths) of a second.

Let's make some sounds.

1 # c3_sounds.kbs
2 sound 233, 1000
3 sound 466, 500
4 sound 233, 1000

Program 16: Play Three Individual Notes

You may have heard a clicking noise in your speakers between the
notes played in the last example. This is caused by the computer
creating the sound and needing to stop and think a millisecond or so.
The sound statement also can be written using a list of frequencies and
durations to smooth out the transition from one note to another.

1 # c3_soundslist.kbs
2 sound {233, 1000, 466, 500, 233, 1000}

Program 17: List of Sounds

This second sound program plays the same three tones for the same

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 33

duration but the computer creates and plays all of the sounds at once,
making them smoother.

sound frequency, duration
sound {frequency1, duration1, frequency2,

duration2 ...}
sound numeric_array

The basic sound statement takes two arguments; (1) the
frequency of the sound in Hz (cycles per second) and (2) the
length of the tone in milliseconds (ms). The second form of
the sound statement uses curly braces and can specify
several tones and durations in a list. The third form of the
sound statement uses an array containing frequencies and
durations. Arrays are covered in Chapter 11.

How do we get BASIC-256 to play a tune? The first thing we need to do
is to convert the notes on a music staff to frequencies. Illustration 7
shows two octaves of music notes, their names, and the approximate
frequency the note makes. In music you will also find a special mark
called the rest. The rest means not to play anything for a certain
duration. If you are using a list of sounds you can insert a rest by
specifying a frequency of zero (0) and the needed duration for the
silence.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 34

Take a little piece of music and then look up the frequency values for
each of the notes. Why don't we have the computer play “Charge!”.
The music is in Illustration 9. You might notice that the high G in the
music is not on the musical notes; if a note is not on the chart you can
double (to make higher) or half (to make lower) the same note from
one octave away.

Illustration 9: Charge!

Now that we have the frequencies we need the duration for each of the
notes. Table 2 shows most of the common note and rest symbols, how
long they are when compared to each other, and a few typical
durations.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Illustration 8: Musical Notes

Chapter 3: Sound and Music. Page 35

Duration in milliseconds (ms) can be calculated if you know the speed
if the music in beats per minute (BPM) using Formula 1.

Formula 1: Calculating Note Duration

Note Name Symbols
for Note
and Rest

Relative
Length

At 100
BPM

Duration
ms

At 120
BPM

Duration
ms

At 140
BPM

Duration
ms

Dotted Whole 6.000 3600 3000 2571

Whole 4.000 2400 2000 1714

Dotted Half 3.000 1800 1500 1285

Half 2.000 1200 1000 857

Dotted Quarter 1.500 900 750 642

Quarter 1.000 600 500 428

Dotted Eighth 0.750 450 375 321

Eighth 0.500 300 250 214

Dotted
Sixteenth

0.375 225 187 160

Sixteenth 0.250 150 125 107

Table 2: Musical Notes and Typical Durations

So You Want to Learn to Program?
© 2010 James M. Reneau.

Note Duration=1000∗60/Beats Per Minute∗Relative Length

Chapter 3: Sound and Music. Page 36

Now with the formula and table to calculate note durations, we can
write the program to play “Charge!”.

1 # c3_charge.kbs - play charge
2 sound {392, 375, 523, 375, 659, 375, 784, 250,

659, 250, 784, 250}
3 say "Charge!"

Program 18: Charge!

Go on-line and find the music for “Row-row-row Your Boat”
or another tune and write a program to play it.

Numeric Variables:

Computers are really good at remembering things, where we humans
sometimes have trouble. The BASIC language allows us to give names
to places in the computer's memory and then store information in
them. These places are called variables.

There are four types of variables: numeric variables, string variables,
numeric array variables, and string array variables. You will learn how
to use numeric variables in this chapter and the others in later
chapters.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 37

Numeric variable

A numeric variable allows you to assign a name to a block of
storage in the computer's short-term memory. You may
store and retrieve numeric (whole or decimal) values from
the numeric variable in your program.

A numeric variable name must begin with a letter; may
contain letters and numbers; and are case sensitive. You
may not use words reserved by the BASIC-256 language
when naming your variables (see Appendix I).

Examples of valid variable names include: a, b6, reader, x,
and zoo.

Variable names are case sensitive. This means that an
upper case variable and a lowercase variable with the same
letters do not represent the same location in the computer's
memory.

Program 19 is an example of a program using numeric variables.

1 # c3_numericvariables.kbs
2 numerator = 30
3 denominator = 5
4 result = numerator / denominator
5 print result

Program 19: Simple Numeric Variables

The program above uses three variables. On line two it stores the

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 38

value 30 into the location named “numerator”. Line three stores the
value 5 in the variable “denominator”. Line four takes the value from
“numerator” divides it by the value in the “denominator” variable and
stores the value in the variable named “result”.

Now that we have seen variables in action we could re-write the
“Charge!” program using variables and the formula to calculate note
durations (Formula 1).

1 # c3_charge2.kbs
2 # play charge - use variables
3 beats = 120
4 dottedeighth = 1000 * 60 / beats * .75
5 eighth = 1000 * 60 / beats * .5
6 sound {392, dottedeighth, 523, dottedeighth, 659,

dottedeighth, 784, eighth, 659, eighth, 784,
eighth}

7 say "Charge!"

Program 20: Charge! with Variables

Change the speed of the music playing by adjusting the
value stored in the beats

For this chapter's big program let's take a piece of music by
J.S. Bach and write a program to play it.

The musical score is a part of J.S. Bach's Little Fuge in G.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 39

Illustration 10: First Line of J.S. Bach's Little Fuge in G

1 # c3_littlefuge.kbs
2 # Music by J.S.Bach - XVIII Fuge in G moll.
3 tempo = 100 # beats per minute
4 milimin = 1000 * 60 # miliseconds in a minute
5 q = milimin / tempo # quarter note is a beat
6 h = q * 2 # half note (2 quarters)
7 e = q / 2 # eight note (1/2 quarter)
8 s = q / 4 # sixteenth note (1/4 quarter)
9 de = e + s # dotted eight - eight + 16th
10 dq = q + e # doted quarter - quarter + eight
11
12 sound{392, q, 587, q, 466, dq, 440, e, 392, e,

466, e, 440, e, 392, e, 370, e, 440, e, 294, q,
392, e, 294, e, 440, e, 294, e, 466, e, 440, s,
392, s, 440, e, 294, e, 392, e, 294, s, 392, s,
440, e, 294, s, 440, s, 466, e, 440, s, 392, s,
440, s, 294, s}

Program 21: Big Program - Little Fuge in G

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 3: Sound and Music. Page 40

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 41

Chapter 4: Thinking Like a Programmer

One of the hardest things to learn is how to think like a programmer. A
programmer is not created by simple books or classes but grows from
within an individual. To become a “good” programmer takes passion
for technology, self learning, basic intelligence, and a drive to create
and explore.

You are like the great explorers Christopher Columbus, Neil Armstrong,
and Yuri Gagarin (the first human in space). You have an unlimited
universe to explore and to create within the computer. The only
restrictions on where you can go will be your creativity and willingness
to learn.

A program to develop a game or interesting application can often
exceed several thousand lines of computer code. This can very quickly
become overwhelming, even to the most experienced programmer.
Often we programmers will approach a complex problem using a three
step process, like:

1. Think about the problem.
2. Break the problem up into pieces and write them down formally.
3. Convert the pieces into the computer language you are using.

Pseudocode:

Pseudocode is a fancy word for writing out, step by step, what your
program needs to be doing. The word pseudocode comes from the
Greek prefix “pseudo-” meaning fake and “code” for the actual
computer programming statements. It is not created for the computer
to use directly but it is made to help you understand the complexity of
a problem and to break it down into meaningful pieces.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 42

There is no single best way to write pseudocode. Dozens of standards
exist and each one of them is very suited for a particular type of
problem. In this introduction we will use simple English statements to
understand our problems.

How would you go about writing a simple program to draw a school
bus (like in Illustration 11)?

Illustration 11: School Bus

Let's break this problem into two steps:

• draw the wheels
• draw the body

Now let's break the initial steps into smaller pieces and write our
pseudocode:

Set color to black.
Draw both wheels.
Set color to yellow.
Draw body of bus.
Draw the front of bus.

Table 3: School Bus - Pseudocode

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 43

Now that we have our program worked out, all we need to do is write
it:

Set color to black. color black
Draw both wheels. circle 50,120,20

circle 200,120,20
Set color to yellow. color yellow
Draw body of bus. rect 50,0,200,100
Draw the front of bus. rect 0,50,50,50

Table 4: School Bus - Pseudocode with BASIC-256 Statements

The completed school bus program (Program 22) is listed below. Look
at the finished program and you will see comment statements used in
the program to help the programmer remember the steps used during
the initial problem solving.

1 # schoolbus.kbs
2 clg
3 # draw wheels
4 color black
5 circle 50,120,20
6 circle 200,120,20
7 # draw bus body
8 color yellow
9 rect 50,0,200,100
10 rect 0,50,50,50

Program 22: School Bus

In the school bus example we have just seen there were many
different ways to break up the problem. You could have drawn the bus
first and the wheels last, you could have drawn the front before the

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 44

back,... We could list dozens of different ways this simple problem
could have been tackled.

One very important thing to remember, THERE IS NO WRONG WAY to
approach a problem. Some ways are better than others (fewer
instructions, easier to read, …), but the important thing is that you
solved the problem.

Try your hand at writing pseudocode. How would you tell
BASIC-256 to draw a stick figure?

Flowcharting:

Another technique that programmers use to understand a problem is
called flowcharting. Following the old adage of “a picture is worth a
thousand words”, programmers will sometimes draw a diagram
representing the logic of a program. Flowcharting is one of the oldest
and commonly used methods of drawing this structure.

This brief introduction to flowcharts will only cover a small part of what
that can be done with them, but with a few simple symbols and
connectors you will be able to model very complex processes. This
technique will serve you well not only in programming but in solving
many problems you will come across. Here are a few of the basic
symbols:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 45

Symbol Name and Description

Flow – An arrow represents moving from one
symbol or step in the process to another.
You must follow the direction of the
arrowhead.

Terminator
Terminator – This symbol tells us where to
start and finish the flowchart. Each flowchart
should have two of these: a start and a finish.

Process

Process – This symbol represents activities or
actions that the program will need to take.
There should be only one arrow leaving a
process.

Input and
Output

Input and Output (I/O) – This symbol
represents data or items being read by the
system or being written out of the system. An
example would be saving or loading files.

Decision

Decision – The decision diamond asks a
simple yes/no or true/false question. There
should be two arrows that leave a decision.
Depending on the result of the question we
will follow one path out of the diamond.

Table 5: Essential Flowcharting Symbols

The best way to learn to flowchart is to look at some examples and to
try your own hand it it.

Flowcharting Example One:

You just rolled out of bed and your mom has given you two choices for
breakfast. You can have your favorite cold cereal or a scrambled egg.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 4: Thinking Like a Programmer Page 46

If you do not choose one of those options you can go to school hungry.

Illustration 12: Breakfast -
Flowchart

Take a look at Illustration 12 (above) and follow all of the arrows. Do
you see how that picture represents the scenario?

Flowcharting Example Two:

Another food example. You are thirsty and want a soda from the
machine. Take a look at Illustration 13 (below).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Start

Scrambled
eggs?

Eat.

Cereal?

Fix eggs.

Get bowl, milk,
and cereal.

Yes

No

No

Yes

Finish

Chapter 4: Thinking Like a Programmer Page 47

Illustration 13: Soda Machine - Flowchart

Notice in the second flowchart that there are a couple of times that we
may need to repeat a process. You have not seen how to do that in
BASIC-256, but it will be covered in the next few chapters.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Start

Do we have
enough change
for the machine?

Make selection.

Insert coin.

Yes

No

No

YesHave we
Inserted enough?

Sold out?
No Yes

Get can.

Get change if any.

Drink.

Finish

Chapter 4: Thinking Like a Programmer Page 48

Try your hand at drawing some simple flow charts. Try a
chart for how to brush your teeth or how to cross the street.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 49

Chapter 5: Your Program Asks for
Advice.

This chapter introduces a new type of variables (string variables) and
how to get text and numeric responses from the user.

Another Type of Variable – The String Variable:

In Chapter 3 you got to see numeric variables, which can only store
whole or decimal numbers. Sometimes you will want to store a string,
text surrounded by “”, in the computer's memory. To do this we use a
new type of variable called the string variable. A string variable is
denoted by appending a dollar sign $ on a variable name.

You may assign and retrieve values from a string variable the same
way you use a numeric variable. Remember, the variable name, case
sensitivity, and reserved word rules are the same with string and
numeric variables.

1 # ilikejim.kbs
2 name$ = "Jim"
3 firstmessage$ = name$ + " is my friend."
4 secondmessage$ = "I like " + name$ + "."
5 print firstmessage$
6 say firstmessage$
7 print secondmessage$
8 say secondmessage$

Program 23: I Like Jim

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 50

Jim is my friend.
I like Jim.

Sample Output 23: I Like Jim

String variable

A string variable allows you to assign a name to a block of
storage in the computer's short-term memory. You may
store and retrieve text and character values from the string
variable in your program.

A string variable name must begin with a letter; may contain
letters and numbers; are case sensitive; and ends with a
dollar sign. Also, you can not use words reserved by the
BASIC-256 language when naming your variables (see
Appendix I). Examples of valid string variable names
include: d$, c7$, book$, X$, and barnYard$.

You may be tempted to assign a number to a string variable
or a string to a numeric variable. If you do you will receive a
syntax error.

Input – Getting Text or Numbers From the User:

So far we have told the program everything it needs to know in the
programming code. The next statement to introduce is input. The
input statement captures either a string or a number that the user
types into the text area and stores that value in a variable.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 51

Let's take Program 23 and modify it so that it will ask you for a name
and then say hello to that person.

1 # ilikeinput.kbs
2 input “enter your name>”, name$
3 firstmessage$ = name$ + " is my friend."
4 secondmessage$ = "I like " + name$ + "."
5 print firstmessage$
6 say firstmessage$
7 print secondmessage$
8 say secondmessage$

Program 24: I Like?

enter your name>Vance
Vance is my friend.
I like Vance.

Sample Output 24: I Like?

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 52

input “prompt”, stringvariable$
input “prompt”, numericvariable
input stringvariable$
input numericvariable

The input statement will retrieve a string or a number that
the user types into the text output area of the screen. The
result will be stored in a variable that may be used later in
the program.

A prompt message, if specified, will display on the text
output area and the cursor will directly follow the prompt.

If a numeric result is desired (numeric variable specified in
the statement) and the user types a string that can not be
converted to a number the input statement will set the
variable to zero (0).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 53

The “Math-wiz” program shows an example of input with numeric
variables.

1 # mathwiz.kbs
2 input "a? ", a
3 input "b? ", b
4 print a + "+" + b + "=" + (a+b)
5 print a + "-" + b + "=" + (a-b)
6 print b + "-" + a + "=" + (b-a)
7 print a + "*" + b + "=" + (a*b)
8 print a + "/" + b + "=" + (a/b)
9 print b + "/" + a + "=" + (b/a)

Program 25: Math-wiz

a? 7
b? 56
7+56=63
7-56=-49
56-7=49
7*56=392
7/56=0.125
56/7=8

Sample Output 25: Math-wiz

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 54

This chapter has two “Big Programs” The first is a fancy
program that will say your name and how old you will be in 8
years and the second is a silly story generator.

1 # sayname.kbs
2 input "What is your name?", name$
3 input "How old are you?", age
4 greeting$ = "It is nice to meet you, " + name$ +

"."
5 print greeting$
6 say greeting$
7 greeting$ = "In 8 years you will be " + (age +

8) + " years old. Wow, thats old!"
8 print greeting$
9 say greeting$

Program 26: Fancy – Say Name

What is your name?Joe
How old are you?13
It is nice to meet you, Joe.
In 8 years you will be 21 years old. Wow, thats old!

Sample Output 26: Fancy – Say Name

1 # sillystory.kbs
2
3 print "A Silly Story."
4
5 input "Enter a noun? ", noun1$
6 input "Enter a verb? ", verb1$

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 55

7 input "Enter a room in your house? ", room1$
8 input "Enter a verb? ", verb2$
9 input "Enter a noun? ", noun2$
10 input "Enter an adjective? ", adj1$
11 input "Enter a verb? ", verb3$
12 input "Enter a noun? ", noun3$
13 input "Enter Your Name? ", name$
14
15
16 sentence$ = "A silly story, by " + name$ + "."
17 print sentence$
18 say sentence$
19
20 sentence$ = "One day, not so long ago, I saw a "

+ noun1$ + " " + verb1$ + " down the stairs."
21 print sentence$
22 say sentence$
23
24 sentence$ = "It was going to my " + room1$ + " to

" + verb2$ + " a " + noun2$
25 print sentence$
26 say sentence$
27
28 sentence$ = "The " + noun1$ + " became " + adj1$

+ " when I " + verb3$ + " with a " + noun3$ + "."
29 print sentence$
30 say sentence$
31
32 sentence$ = "The End."
33 print sentence$
34 say sentence$

Program 27: Big Program - Silly Story Generator

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 5: Your Program Asks for Advice. Page 56

A Silly Story.
Enter a noun? car
Enter a verb? walk
Enter a room in your house? kitchen
Enter a verb? sing
Enter a noun? television
Enter an adjective? huge
Enter a verb? watch
Enter a noun? computer
Enter Your Name? Jim
A silly story, by Jim.
One day, not so long ago, I saw a car walk down the
stairs.
It was going to my kitchen to sing a television
The car became huge when I watch with a computer.
The End.

Sample Output 27: Big Program - Silly Story Generator

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 57

Chapter 6: Decisions, Decisions,
Decisions.

The computer is a whiz at comparing things. In this chapter we will
explore how to compare two expressions, how to work with complex
comparisons, and how to optionally execute statements depending on
the results of our comparisons. We will also look at how to generate
random numbers.

True and False:

The BASIC-256 language has one more special type of data that can be
stored in numeric variables. It is the Boolean data type. Boolean
values are either true or false and are usually the result of comparisons
and logical operations. Also to make them easier to work with there
are two Boolean constants that you can use in expressions, they are:
true and false.

true
false

The two Boolean constants true and false can be used in any
numeric or logical expression but are usually the result of a
comparison or logical operator. Actually, the constant true
is stored as the number one (1) and false is stored as the
number zero (0).

Comparison Operators:

Previously we have discussed the basic arithmetic operators, it is now

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 58

time to look at some additional operators. We often need to compare
two values in a program to help us decide what to do. A comparison
operator works with two values and returns true or false based on the
result of the comparison.

Operator Operation

< Less Than
expression1 < expression2
Return true if expression1 is less than expression2, else return
false.

<= Less Than or Equal
expression1 <= expression2
Return true if expression1 is less than or equal to expression2,
else return false.

> Greater Than
expression1 > expression2
Return true if expression1 is greater than expression2, else
return false.

>= Greater Than or Equal
expression1 >= expression2
Return true if expression1 is greater than or equal to
expression2, else return false.

= Equal
expression1 = expression2
Return true if expression1 is equal to expression2, else return
false.

<> Not Equal
Expression1 <> expression2
Return true if expression1 is not equal to expression2, else
return false.

Table 6: Comparison Operators

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 59

< <= > >= = <>

The six comparison operations are: less than (<), less than
or equal (<=), greater than (>), greater than or equal (>=),
equal (=), and not equal (<>). They are used to compare
numbers and strings. Strings are compared alphabetically
left to right. You may also use parenthesis to group
operations together.

Making Simple Decisions – The If Statement:

The if statement can use the result of a comparison to optionally
execute a statement or block of statements. This first program
(Program 28) uses three if statements to display whether your friend is
older, the same age, or younger.

1 # compareages.kbs - compare two ages
2 input "how old are you?", yourage
3 input "how old is your friend?", friendage
4
5 print "You are ";
6 if yourage < friendage then print "younger than";
7 if yourage = friendage then print "the same age

as";
8 if yourage > friendage then print "older than";
9 print " your friend"

Program 28: Compare Two Ages

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 60

how old are you?13
how old is your friend?12
You are older than your friend

Sample Output 28: Compare Two Ages

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 61

Illustration 14: Compare Two
Ages - Flowchart

if condition then statement

If the condition evaluates to true then execute the statement
following the then clause.

Random Numbers:

When we are developing games and simulations it may become
necessary for us to simulate dice rolls, spinners, and other random

So You Want to Learn to Program?
© 2010 James M. Reneau.

get your age

get friend's age

your age
less than

friend's age

print that you are younger

Start

no yes

your age
equals

friend's age

print that you are the same age

no yes

your age
greater than
friend's age

print that you are older

no yes

Finish

Chapter 6: Decisions, Decisions, Decisions. Page 62

happenings. BASIC-256 has a built in random number generator to do
these things for us.

rand

A random number is returned when rand is used in an
expression. The returned number ranges from zero to one,
but will never be one (0≥n1.0).

Often you will want to generate an integer from 1 to r, the
following statement can be used n = int(rand * r) + 1

1 # coinflip.kbs
2 coin = rand
3 if coin < .5 then print "Heads."
4 if coin >= .5 then print "Tails."

Program 29: Coin Flip

Tails.

Sample Output 29: Coin Flip

In program 5.2 you may have been tempted to use the rand
expression twice, once in each if statement. This would
have created what we call a “Logical Error”.

Remember, each time the rand expression is executed it
returns a different random number.

Logical Operators:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 63

Sometimes it is necessary to join simple comparisons together. This
can be done with the four logical operators: and, or, xor, and not. The
logical operators work very similarly to the way conjunctions work in
the English language, except that “or” is used as one or the other or
both.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 64

Operator Operation

AND Logical And
expression1 AND expression2
If both expression1 and experssion2 are true then return a true
value, else return false.

AND
expression1

TRUE FALSE

expression
2

TRUE TRUE FALSE

FALSE FALSE FALSE

OR Logical Or
expression1 OR expression2
If either expression1 or experssion2 are true then return a true
value, else return false.

OR
expression1

TRUE FALSE

expression
2

TRUE TRUE TRUE

FALSE TRUE FALSE

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 65

XOR Logical Exclusive Or
expression1 XOR expression2
If only one of the two expressions is true then return a true
value, else return false. The XOR operator works like “or” often
does in the English language - “You can have your cake xor you
can eat it:.

OR
expression1

TRUE FALSE

expression
2

TRUE FALSE TRUE

FALSE TRUE FALSE

NOT Logical Negation (Not)
NOT expression1
Return the opposite of expression1. If expression 1 was true
then return false. If experssion1 was false then return a true.

NOT

expression
1

TRUE FALSE

FALSE TRUE

and or xor not

The four logical operations: logical and, logical or, logical
exclusive or, and logical negation (not) join or modify
comparisons. You may also use parenthesis to group
operations together.

Making Decisions with Complex Results – If/End If:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 66

When we are writing programs it sometimes becomes necessary to do
multiple statements when a condition is true. This is done with the
alternate format of the if statement. With this statement you do not
place a statement on the same line as the if, but you place multiple
(one or more) statements on lines following the if statement and then
close the block of statements with the end if statement.

if condition then
 statement(s) to execute when true
end if

The if/end if statements allow you to create a block of
programming code to execute when a condition is true. It is
often customary to indent the statements with in the if/end
if statements so they are not confusing to read.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 67

1 # dice.kbs
2 die1 = int(rand * 6) + 1
3 die2 = int(rand * 6) + 1
4 total = die1 + die2
5
6 print "die 1 = " + die1
7 print "die 2 = " + die2
8 print "you rolled " + total
9 say "you rolled " + total
10
11 if total = 2 then
12 print "snake eyes!"
13 say "snake eyes!"
14 end if
15 if total = 12 then
16 print "box cars!"
17 say "box cars!"
18 end if
19 if die1 = die2 then
20 print "doubles - roll again!"
21 say "doubles - roll again!"
22 end if

Program 30: Rolling Dice

die 1 = 6
die 2 = 6
you rolled 12
box cars!
doubles - roll again!

Sample Output 30: Rolling Dice

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 68

“Edit” then “Beautify” on the menu

The “Beautify” option on the “Edit” menu will clean up the
format of your program to make it easier to read. It will
remove extra spaces from the beginning and ending of lines
and will indent blocks of code (like in the if/end if
statements).

Deciding Both Ways – If/Else/End If:

The third and last form of the if statement is the if/else/end if. This
extends the if/end if statements by allowing you to create a block of
code to execute if the condition is true and another block to execute
when the condition is false.

if condition then
 statement(s) to execute when true
else
 statement(s) to execute when false
end if

The if, else, and end if statements allow you to define two
blocks of programming code. The first block, after the then
clause, executes if the condition is true and the second
block, after the else clause, will execute when the condition
if false.

Program 31 re-writes Program 29 using the else statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 69

1 # coinflip2 - coin flip with else
2 coin = rand
3 if coin < .5 then
4 print "Heads."
5 say "Heads."
6 else
7 print "Tails."
8 say "Tails."
9 end if

Program 31: Coin Flip – With Else

Heads.

Sample Output 31: Coin Flip – With Else

Nesting Decisions:

One last thing. With the if/end if and the if/else/end if statements it is
possible to nest an if inside the code of another. This can become
confusing but you will see this happening in future chapters.

This chapter's big program is a program to roll a single 6-
sided die and then draw on the graphics display the number
of dots.

1 # dieroll.kbs
2 # hw - height and width of the dots on the dice
3 hw = 70
4 # margin - space before each dot

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 70

5 # 1/4 of the space left over after we draw 3
dots

6 margin = (300 - (3 * hw)) / 4
7 # z1 - x and y position of top of top row and

column of dots
8 z1 = margin
9 # z2 - x and y position of top of middle row and

column of dots
10 z2 = z1 + hw + margin
11 # z3 - x and y position of top of bottom row and

column of dots
12 z3 = z2 + hw + margin
13
14 # get roll
15 roll = int(rand * 6) + 1
16 print roll
17
18 color black
19 rect 0,0,300,300
20
21 color white
22 # top row
23 if roll <> 1 then rect z1,z1,hw,hw
24 if roll = 6 then rect z2,z1,hw,hw
25 if roll >= 4 and roll <= 6 then rect z3,z1,hw,hw
26 # middle
27 if roll = 1 or roll = 3 or roll = 5 then rect

z2,z2,hw,hw
28 # bottom row
29 if roll >= 4 and roll <= 6 then rect z1,z3,hw,hw
30 if roll = 6 then rect z2,z3,hw,hw
31 if roll <> 1 then rect z3,z3,hw,hw
32
33 say "you rolled a " + roll

Program 32: Big Program - Roll a Die and Draw It

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 71

Sample Output 32: Big Program -
Roll a Die and Draw It

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 6: Decisions, Decisions, Decisions. Page 72

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 73

Chapter 7: Looping and Counting - Do it
Again and Again.

So far our program has started, gone step by step through our
instructions, and quit. While this is OK for simple programs, most
programs will have tasks that need to be repeated, things counted, or
both. This chapter will show you the three looping statements, how to
speed up your graphics, and how to slow the program down.

The For Loop:

The most common loop is the for loop. The for loop repeatedly
executes a block of statements a specified number of times, and keeps
track of the count. The count can begin at any number, end at any
number, and can step by any increment. Program 33 shows a simple
for statement used to say the numbers 1 to 10 (inclusively). Program
34 will count by 2 starting at zero and ending at 10.

1 # for.kbs
2 for t = 1 to 10
3 print t
4 say t
5 next t

Program 33: For Statement

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 74

1
2
3
4
5
6
7
8
9
10

Sample Output 33: For Statement

1 # forstep2.kbs
2 for t = 0 to 10 step 2
3 print t
4 say t
5 next t

Program 34: For Statement – With Step

0
2
4
6
8
10

Sample Output 34: For Statement – With Step

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 75

for variable = expr1 to expr2 [step expr3]
 statement(s)
next variable

Execute a specified block of code a specified number of
times. The variable will begin with the value of expr1. The
variable will be incremented by expr3 (or one if step is not
specified) the second and subsequent time through the loop.
Loop terminates if variable exceeds expr2.

Using a loop we can easily draw very interesting graphics. Program 35
will draw a Moiré Pattern. This really interesting graphic is caused by
the computer being unable to draw perfectly straight lines. What is
actually drawn are pixels in a stair step fashion to approximate a
straight line. If you look closely at the lines we have drawn you can
see that they actually are jagged.

1 # moire.kbs
2 clg
3 color black
4 for t = 1 to 300 step 3
5 line 0,0,300,t
6 line 0,0,t,300
7 next t

Program 35: Moiré Pattern

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 76

Sample Output 35: Moiré
Pattern

What kind of Moiré Patterns can you draw? Start in the
center, use different step values, overlay one on top of
another, try different colors, go crazy.

For statements can even be used to count backwards. To do this set
the step to a negative number.

1 # forstepneg1.kbs
2 for t = 10 to 0 step -1
3 print t
4 pause 1.0
5 next t

Program 36: For Statement – Countdown

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 77

10
9
8
7
6
5
4
3
2
1
0

Sample Output 36: For Statement – Countdown

pause seconds

The pause statement tells BASIC-256 to stop executing the
current program for a specified number of seconds. The
number of seconds may be a decimal number if a fractional
second pause is required.

Do Something Until I Tell You To Stop:

The next type of loop is the do/until. The do/until repeats a block of
code one or more times. At the end of each iteration a logical
condition is tested. The loop repeats as long as the condition is false.
Program 37 uses the do/until loop to repeat until the user enters a
number from 1 to 10.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 78

1 # dountil.kbs
2 do
3 input "enter a number from 1 to 10?",n
4 until n>=1 and n<=10
5 print "you entered " + n

Program 37: Get a Number from 1 to 10

enter a number from 1 to 10?66
enter a number from 1 to 10?-56
enter a number from 1 to 10?3
you entered 3

Sample Output 37: Get a Number from 1 to 10

do
 statement(s)
until condition

Do the statements in the block over and over again while
the condition is false. The statements will be executed one
or more times.

Program 38 uses a do/until loop to count from 1 to 10 like Program 33
did with a for statement.

1 # dountilfor.kbs
2 t = 1
3 do
4 print t
5 t = t + 1
6 until t >= 11

Program 38: Do/Until Count to 10

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 79

1
2
3
4
5
6
7
8
9
10

Sample Output 38: Do/Until Count to 10

Do Something While I Tell You To Do It:

The third type of loop is the while/end while. It tests a condition before
executing each iteration and if it evaluates to true then executes the
code in the loop. The while/end while loop may execute the code
inside the loop zero or more times.

Sometimes we will want a program to loop forever, until the user stops
the program. This can easily be accomplished using the Boolean true
constant (see Program 39).

1 # whiletrue.kbs
2 while true
3 print “nevermore “;
4 end while

Program 39: Loop Forever

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 80

nevermore.
nevermore.
nevermore.
nevermore.
nevermore.
… runs until you stop it

Sample Output 39: Loop Forever

while condition
 statement(s)
end while

Do the statements in the block over and over again while the
condition is true. The statements will be executed zero or
more times.

Program 40 uses a while loop to count from 1 to 10 like Program 33 did
with a for statement.

1 # whilefor.kbs
2 t = 1
3 while t <= 10
4 print t
5 t = t + 1
6 end while

Program 40: While Count to 10

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 81

1
2
3
4
5
6
7
8
9
10

Sample Output 40: While Count to 10

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 82

Fast Graphics:

When we need to execute many graphics quickly, like with animations
or games, BASIC-256 offers us a fast graphics system. To turn on this
mode you execute the fastgraphics statement. Once fastgraphics
mode is started the graphics output will only be updated once you
execute the refresh statement.

fastgraphics
refresh

Start the fastgraphics mode. In fast graphics the screen
will only be updated when the refresh statement is
executed.

Once a program executes the fastgraphics statement it
can not return to the standard graphics (slow) mode.

1 # kalidescope.kbs
2 clg
3 fastgraphics
4 for t = 1 to 100
5 r = int(rand * 256)
6 g = int(rand * 256)
7 b = int(rand * 256)
8 x = int(rand * 300)
9 y = int(rand * 300)
10 h = int(rand * 100)
11 w = int(rand * 100)
12 color rgb(r,g,b)
13 rect x,y,w,h
14 rect 300-x-w,y,w,h
15 rect x,300-y-h,w,h
16 rect 300-x-w,300-y-h,w,h

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 83

17 next t
18 refresh

Program 41: Kalidescope

Sample Output 41: Kalidescope

In Program 41, try running it with the fastgraphics statement
removed or commented out. Do you see the difference?

In this chapter's “Big Program” let's use a while loop to
animate a ball bouncing around on the graphics display area.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 84

1 # bouncingball.kbs
2 fastgraphics
3 clg
4
5 # starting position of ball
6 x = rand * 300
7 y = rand * 300
8 # size of ball
9 r = 10
10 # speed in x and y directions
11 dx = rand * r + 2
12 dy = rand * r + 2
13
14 color green
15 rect 0,0,300,300
16
17 while true
18 # erase old ball
19 color white
20 circle x,y,r
21 # calculate new position
22 x = x + dx
23 y = y + dy
24 # if off the edges turn the ball around
25 if x < 0 or x > 300 then
26 dx = dx * -1
27 sound 1000,50
28 end if
29 # if off the top or bottom turn the ball

around
30 if y < 0 or y > 300 then
31 dy = dy * -1
32 sound 1500,50
33 end if

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 7: Looping and Counting - Do it Again and Again. Page 85

34 # draw new ball
35 color red
36 circle x,y,r
37 # update the display
38 refresh
39 end while

Program 42: Big Program - Bouncing Ball

Sample Output 42: Big Program -
Bouncing Ball

So You Want to Learn to Program?
© 2010 James M. Reneau.

Page 86

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 87

Chapter 8: Custom Graphics – Creating
Your Own Shapes.

This chapter we will show you how to draw colorful words and special
shapes on your graphics window. Several topics will be covered,
including: fancy text; drawing polygons on the graphics output area;
and stamps, where we can position, re-size, and rotate polygons. You
also will be introduced to angles and how to measure them in radians.

Fancy Text for Graphics Output:

You have been introduced to the print statement (Chapter 1) and can
output strings and numbers to the text output area. The text and font
commands allow you to place numbers and text on the graphics output
area.

1 # graphichello.kbs
2 clg
3 color red
4 font "Tahoma",33,100
5 text 100,100,"Hello."
6 font "Impact",33,50
7 text 100,150,"Hello."
8 font "Courier New",33,50
9 text 100,250,"Hello."

Program 43: Hello on the Graphics Output Area

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 88

Sample Output 43: Hello on the
Graphics Output Area

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 89

font font_name, size_in_point, weight

Set the font, size, and weight for the next text statement to
use to render text on the graphics output area.

Argument Description

font_name String containing the system font name to
use. A font must be previously loaded in the
system before it may be used. Common font
names under Windows include: "Verdana",
"Courier New", "Tahoma", "Arial", and "Times
New Roman".

size_in_point Height of text to be rendered in a
measurement known as point. There are 72
points in an inch.

weight Number from 1 to 100 representing how dark
letter should be. Use 25 for light, 50 for
normal, and 75 for bold.

text x, y, expression

Draw the contents of the expression on the graphics output
area with it's top left corner specified by x and y. Use the
font, size, and weight specified in the last font statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 90

Illustration 15: Common Windows Fonts

Resizing the Graphics Output Area:

By default the graphics output area is 300x300 pixels. While this is
sufficient for many programs, it may be too large or too small for
others. The graphsize statement will re-size the graphics output area
to what ever custom size you require. Your program may also use the
graphwidth and graphheight functions to see what the current graphics
size is set to.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 91

1 # resizegraphics.kbs
2 graphsize 500,500
3 xcenter = graphwidth/2
4 ycenter = graphheight/2
5
6 color black
7 line xcenter, ycenter - 10, xcenter, ycenter + 10
8 line xcenter - 10, ycenter, xcenter + 10, ycenter
9
10 font "Tahoma",12,50
11 text xcenter + 10, ycenter + 10, "Center at (" +

xcenter + "," + ycenter + ")"

Program 44: Re-size Graphics

Sample Output 44: Re-size Graphics

graphsize width, height

Set the graphics output area to the specified height and
width.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 92

graphwidth or graphwidth()
graphheight or graphheight()

Functions that return the current graphics height and width
for you to use in your program.

Creating a Custom Polygon:

In previous chapters we learned how to draw rectangles and circles.
Often we want to draw other shapes. The poly statement will allow us
to draw a custom polygon anywhere on the screen.

Let's draw a big red arrow in the middle of the graphics output area.
First, draw it on a piece of paper so we can visualize the coordinates of
the vertices of the arrow shape.

Illustration 16: Big Red Arrow

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 93

Now start at the top of the arrow going clockwise and write down the x
and y values.

1 # bigredarrow.kbs
2 clg
3 color red
4 poly {150, 100, 200, 150, 175, 150, 175, 200,

125, 200, 125, 150, 100, 150}

Program 45: Big Red Arrow

Sample Output 45: Big Red Arrow

poly {x1, y1, x2, y2 ...}
poly numeric_array

Draw a polygon

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 94

Stamping a Polygon:

The poly statement allowed ue to place a polygon at a specific location
on the screen but it would be difficult to move it around or adjust it.
These problems are solved with the stamp statement. The stamp
statement takes a location on the screen, optional scaling (re-sizing),
optional rotation, and a polygon definition to allow us to place a
polygon anywhere we want it in the screen.

Let's draw an equilateral triangle (all sides are the same length) on a
piece of paper. Put the point (0,0) at the top and make each leg 10
long (see Illustration 17).

Illustration 17: Equilateral Triangle

Now we will create a program, using the simplest form of the stamp
statement, to fill the screen with triangles. Program 46 Will do just
that. It uses the triangle stamp inside two nested loops to fill the
screen.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 95

1 # stamptri.kbs
2 clg
3 color black
4 for x = 25 to 200 step 25
5 for y = 25 to 200 step 25
6 stamp x, y, {0, 0, 5, 8.6, -5, 8.6}
7 next y
8 next x

Program 46: Fill Screen with Triangles

Sample Output 46: Fill Screen with
Triangles

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 96

stamp x, y, {x1, y1, x2, y2 ...}
stamp x, y, numeric_array
stamp x, y, scale, {x1, y1, x2, y2 ...}
stamp x, y, scale, numeric_array
stamp x, y, scale, rotate, {x1, y1, x2,

y2 ...}
stamp x, y, scale, rotate, numeric_array

Draw a polygon with it's origin (0,0) at the screen position
(x,y). Optionally scale (re-size) it by the decimal scale where
1 is full size. Also you may also rotate the stamp clockwise
around it's origin by specifying how far to rotate as an angle
expressed in radians (0 to 2π).

Radians 0 to 2π

Angles in BASIC-256 are expressed in a unit of measure
known as a radian. Radians range from 0 to 2π. A right
angle is π/2 radians and an about face is π radians. You can
convert degrees to radians with the formula r=d /180∗ .

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 97

Illustration 18: Degrees and Radians

Let's look at another example of the stamp program. Program 47 used
the same isosceles triangle as the last program but places 100 of them
at random locations, randomly scaled, and randomly rotated on the
screen.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 98

1 # stamptri2.kbs
2 clg
3 color black
4 for t = 1 to 100
5 x = rand * graphwidth
6 y = rand * graphheight
7 s = rand * 7
8 r = rand * 2 * pi
9 stamp x, y, s, r, {0, 0, 5, 8.6, -5, 8.6}
10 next t

Program 47: One Hundred Random Triangles

Sample Output 47: One Hundred
Random Triangles

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 99

pi

The constant pi can be used in expressions so that you do
not have to remember the value of π. Π is approximately
3.1415.

In Program 47, add statements to make the color random.
Also create your own polygon to stamp.

Let's send flowers to somebody special. The following
program draws a flower using rotation and a stamp.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 100

Illustration 19: Big
Program - A Flower For
You - Flower Petal Stamp

1 # aflowerforyou.kbs
2 clg
3
4 color green
5 rect 148,150,4,150
6
7 color 255,128,128
8 for r = 0 to 2*pi step pi/4
9 stamp graphwidth/2, graphheight/2, 2, r, {0,

0, 5, 20, 0, 25, -5, 20}
10 next r
11
12 color 128,128,255
13 for r = 0 to 2*pi step pi/5
14 stamp graphwidth/2, graphheight/2, 1, r, {0,

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 101

0, 5, 20, 0, 25, -5, 20}
15 next r
16
17 message$ = "A flower for you."
18
19 color darkyellow
20 font "Tahoma", 14, 50
21 text 10, 10, message$
22 say message$

Program 48: Big Program - A Flower For You

Sample Output 48: Big Program - A
Flower For You

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 8: Custom Graphics – Creating Your Own Shapes. Page 102

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 103

Chapter 9: Subroutines – Reusing Code.

This chapter introduces the concept of setting labels within your code
and then jumping to those labels. This will allow a program to execute
the code in a more complex order. You will also see the subroutine. A
gosub acts like a jump with the ability to jump back.

Labels and Goto:

In Chapter 7 we saw how to use language structures to perform
looping. In Program 49 we can see an example of looping forever
using a label and a goto statement.

1 # gotodemo.kbs
2 top:
3 print "hi"
4 goto top

Program 49: Goto With a Label

hi
hi
hi
hi
... repeats forever

Sample Output 49: Goto With a Label

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 104

label:

A label allows you to name a place in your program so you
may jump to that location later in the program. You may
have multiple labels in a single program.

A label name is followed with a colon (:); must be on a line
with no other statements; must begin with a letter; may
contain letters and numbers; and are case sensitive. Also,
you can not use words reserved by the BASIC-256 language
when naming your variables (see Appendix I).

Examples of valid labels include: top:, far999:, and About:.

goto label

The goto statement causes the execution to jump to the
statement directly following the label.

Some programmers use labels with goto statements throughout their
programs. While it is sometimes easier to program with goto
statements they can add complexity to large programs, making the
program more difficult to debug and maintain. It is recommended that
you keep the use of goto statements to an absolute minimum.

Let's take a look at another example of a label and goto statement. In
Program 50 we create a colorful clock.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 105

1 # textclock.kbs
2 fastgraphics
3 font "Tahoma", 20, 100
4 color blue
5 rect 0, 0, 300, 300
6 color yellow
7 text 0, 0, "My Clock."
8 showtime:
9 color blue
10 rect 100, 100, 200, 100
11 color yellow
12 text 100, 100, hour + ":" + minute + ":" + second
13 refresh
14 pause 1.0
15 goto showtime

Program 50: Text Clock

Sample Output 50: Text Clock

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 106

hour or hour()
minute or minute()
second or second()
month or month()
day or day()
year or year()

The functions year, month, day, hour, minute, and
second return the components of the system clock. They
allow your program to tell what time it is.

year Returns the system 4 digit year.

month Returns month number 0 to 11. 0 – January,
1-February...

day Returns the day of the month 1 to 28,29,30, or
31.

hour Returns the hour 0 to 23 in 24 hour format. 0 –
12 AM, 1- 1 AM, … 13 – 12 PM, 14 – 1 PM, ...

minute Returns the minute 0 to 59 in the current
hour.

second Returns the second 0 to 59 in the current
minute.

Reusing Blocks of Code – The Gosub Statement:

Throughout many programs we will find lines or even whole sections of
code being needed over and over again. To help with this problem
BASIC-256 includes the concept of a subroutine. A subroutine is a
block of code that can be called by other parts of the program to do a
task or part of a task. When a subroutine is finished it returns control
back to where it was called.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 107

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 108

Program 51 shows an example of a subroutine that is called three
times.

1 # gosubdemo.kbs
2 gosub showline
3 print "hi"
4 gosub showline
5 print "there"
6 gosub showline
7 end
8
9 showline:
10 print "------------------"
11 return

Program 51: Gosub

hi

there

Sample Output 51: Gosub

gosub label

The gosub statement causes the execution to jump to the
subroutine defined by the label.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 109

return

Execute the return statement within a subroutine to send
control back to where it was called from.

end

Terminates the program (stop).

Now that we have seen the subroutine in action let's write a new digital
clock program using a subroutine to format the time and date better
(Program 52).

1 # textclockimproved.kbs
2
3 fastgraphics
4
5 while true
6 color blue
7 rect 0, 0, graphwidth, graphheight
8 color white
9 font "Times New Roman", 40, 100
10
11 line$ = ""
12 n = month + 1
13 gosub addtoline
14 line$ = line$ + "/"
15 n = day
16 gosub addtoline
17 line$ = line$ + "/"
18 line$ = line$ + year

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 110

19 text 50,100, line$
20
21 line$ = ""
22 n = hour
23 gosub addtoline
24 line$ = line$ + ":"
25 n = minute
26 gosub addtoline
27 line$ = line$ + ":"
28 n = second
29 gosub addtoline
30 text 50,150, line$
31 refresh
32 end while
33
34 addtoline:
35 ## append a two digit number in n to the string

line$
36 if n < 10 then line$ = line$ + "0"
37 line$ = line$ + n
38 return

Program 52: Text Clock - Improved

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 111

Sample Output 52: Text Clock -
Improved

In our “Big Program” this chapter, let's make a program to
roll two dice, draw them on the screen, and give the total.
Let's use a gosub to draw the image so that we only have to
write it once.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 112

1 # roll2dice.kbs
2 clg
3 total = 0
4
5 x = 30
6 y = 30
7 roll = int(rand * 6) + 1
8 total = total + roll
9 gosub drawdie
10
11 x = 130
12 y = 130
13 roll = int(rand * 6) + 1
14 total = total + roll
15 gosub drawdie
16
17 print "you rolled " + total + "."
18 end
19
20 drawdie:
21 # set x,y for top left and roll for number of

dots
22 # draw 70x70 with dots 10x10 pixels
23 color black
24 rect x,y,70,70
25 color white
26 # top row
27 if roll <> 1 then rect x + 10, y + 10, 10, 10
28 if roll = 6 then rect x + 30, y + 10, 10, 10
29 if roll >= 4 and roll <= 6 then rect x + 50, y +

10, 10, 10
30 # middle
31 if roll = 1 or roll = 3 or roll = 5 then rect x +

30, y + 30, 10, 10
32 # bottom row

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 113

33 if roll >= 4 and roll <= 6 then rect x + 10, y +
50, 10, 10

34 if roll = 6 then rect x + 30, y + 50, 10, 10
35 if roll <> 1 then rect x + 50, y + 50, 10, 10
36 return

Program 53: Big Program - Roll Two Dice Graphically

Sample Output 53: Big Program -
Roll Two Dice Graphically

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 9: Subroutines – Reusing Code. Page 114

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 115

Chapter 10: Mouse Control – Moving
Things Around.

This chapter will show you how to make your program respond to a
mouse. There are two different ways to use the mouse: tracking mode
and clicking mode. Both are discussed with sample programs.

Tracking Mode:

In mouse tracking mode, there are three numeric functions (mousex,
mousey, and mouseb) that will return the coordinates of the mouse
pointer over the graphics output area. If the mouse is not over the
graphics display area then the mouse movements will not be recorded
(the last location will be returned).

1 # mousetrack.kbs
2 print "Move the mouse around the graphics window."
3 print "Click left mouse button to quit."
4
5 fastgraphics
6
7 # do it over and over until the user clicks left
8 while mouseb <> 1
9 # erase screen
10 color white
11 rect 0, 0, graphwidth, graphheight
12 # draw new ball
13 color red
14 circle mousex, mousey, 10
15 refresh
16 end while
17
18 print "all done."

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 116

19 end

Program 54: Mouse Tracking

Sample Output 54: Mouse Tracking

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 117

mousex or mousex()
mousey or mousey()
mouseb or mouseb()

The three mouse functions will return the current location of
the mouse as it is moved over the graphics display area.
Any mouse motions outside the graphics display area are
not recorded, but the last known coordinates will be
returned.

mousex Returns the x coordinate of the mouse pointer
position. Ranges from 0 to graphwidth -1.

mousey Returns the y coordinate of the mouse pointer
position. Ranges from 0 to graphheight -1.

mouseb 0 Returns this value when no mouse
button is being pressed.

1 Returns this value when the “left”
mouse button is being pressed.

2 Returns this value when the “right”
mouse button is being pressed.

4 Returns this value when the “center”
mouse button is being pressed.

If multiple mouse buttons are being pressed at
the same time then the value returned will be
the button values added together.

Clicking Mode:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 118

The second mode for mouse control is called “Clicking Mode”. In
clicking mode, the mouse location and the button (or combination of
buttons) are stored when the click happens. Once a click is processed
by the program a clickclear command can be executed to reset the
click, so the next one can be recorded.

1 # mouseclick.kbs

2 # X marks the spot where you click
3 print "Move the mouse around the graphics window"
4 print "click left mouse button to mark your spot"
5 print "click right mouse button to stop."
6 clg
7 clickclear
8 while clickb <> 2
9 # clear out last click and
10 # wait for the user to click a button
11 clickclear
12 while clickb = 0
13 pause .01
14 end while
15 #
16 color blue
17 stamp clickx, clicky, 5, {-1, -2, 0, -1, 1,

-2, 2, -1, 1, 0, 2, 1, 1, 2, 0, 1, -1, 2, -2, 1,
-1, 0, -2, -1}

18 end while
19 print "all done."
20 end

Program 55: Mouse Clicking

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 119

Sample Output 55: Mouse Clicking

clickx or clickx()
clicky or clicky()
clickb or clickb()

The values of the three click functions are updated each
time a mouse button is clicked when the pointer is on the
graphics output area. The last location of the mouse when
the last click was received are available from these three
functions.

clickclear

The clickclear statement resets the clickx, clicky, and
clickb functions to zero so that a new click will register
when clickb <> 0.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 120

The big program this chapter uses the mouse to move color
sliders so that we can see all 16,777,216 different colors on
the screen.

1 # colorchooser.kbs
2 fastgraphics
3
4 print "colorchooser - find a color"
5 print "click and drag red, green and blue sliders"
6
7 # variables to store the color parts
8 r = 128
9 g = 128
10 b = 128
11
12 gosub display
13
14 while true
15 # wait for click
16 while mouseb = 0
17 pause .01
18 end while
19 # change color sliders
20 if mousey < 75 then
21 r = mousex
22 if r > 255 then r = 255
23 end if
24 if mousey >= 75 and mousey < 150 then
25 g = mousex
26 if g > 255 then g = 255
27 end if

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 121

28 if mousey >= 150 and mousey < 225 then
29 b = mousex
30 if b > 255 then b = 255
31 end if
32 gosub display
33 end while
34 end
35
36 display:
37 clg
38 # draw red
39 color 255, 0, 0
40 font "Tahoma", 30, 100
41 text 260, 10, "r"
42 for t = 0 to 255
43 color t, 0, 0
44 line t,0,t,37
45 color t, g, b
46 line t, 38, t, 75
47 next t
48 color black
49 rect r-1, 0, 3, 75
50 # draw green
51 color 0, 255, 0
52 font "Tahoma", 30, 100
53 text 260, 85, "g"
54 for t = 0 to 255
55 color 0, t, 0
56 line t,75,t, 75 + 37
57 color r, t, b
58 line t, 75 + 38, t, 75 + 75
59 next t
60 color black
61 rect g-1, 75, 3, 75
62 # draw blue
63 color 0, 0, 255

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 122

64 font "Tahoma", 30, 100
65 text 260, 160, "b"
66 for t = 0 to 255
67 color 0, 0, t
68 line t, 150, t, 150 + 37
69 color r, g, t
70 line t, 150 + 38, t, 150 + 75
71 next t
72 color black
73 rect b-1, 150, 3, 75
74 # draw swatch
75 color black
76 font "Tahoma", 15, 100
77 text 5, 235, "(" + r + "," + g + "," + b + ")"
78 color r,g,b
79 rect 151,226,150,75
80 refresh
81 return

Program 56: Big Program - Color Chooser

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 123

Sample Output 56: Big Program -
Color Chooser

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 10: Mouse Control – Moving Things Around. Page 124

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 125

Chapter 11: Keyboard Control – Using
the Keyboard to Do Things.

This chapter will show you how to make your program respond to the
user when a key is pressed (arrows, letters, and special keys) on the
keyboard.

Getting the Last Key Press:

The key function returns the last raw keyboard code generated by the
system when a key was pressed. Certain keys (like control-c and
function-1) are captured by the BASIC256 window and will not be
returned by key. After the last key press value has been returned the
function value will be set to zero (0) until another keyboard key has
been pressed.

The key values for printable characters (0-9, symbols, letters) are the
same as their upper case Unicode values regardless of the status of
the caps-lock or shift keys.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 126

1 # readkey.kbs
2 print "press a key - Q to quit"
3 do
4 k = key
5 if k <> 0 then
6 if k >=32 and k <= 127 then
7 print chr(k) + "=";
8 end if
9 print k
10 end if
11 until k = asc("Q")
12 end

Program 57: Read Keyboard

press a key - Q to quit
A=65
Z=90
M=77
16777248
&=38
7=55

Sample Output 57: Read Keyboard

key
key()

The key function returns the value of the last keyboard key
the user has pressed. Once the key value is read by the
function, it is set to zero to denote that no key has been
pressed.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 127

Unicode

The Unicode standard was created to assign numeric values
to letters or characters for the world's writing systems.
There are more than 107,000 different characters defined in
the Unicode 5.0 standard.

See: http://www.unicode.org

asc(expression)

The asc function returns an integer representing the
Unicode value of the first character of the string expression.

chr(expression)

The chr function returns a string, containing a single
character with the Unicode value of the integer expression.

How about we look at a more complex example? Program 58 Draws a
red ball on the screen and the user can move it around using the
keyboard.

1 # moveball.kbs
2 print "use i for up, j for left, k for right, m for

down, q to quit"
3
4 fastgraphics
5 clg
6 ballradius = 20

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 128

7
8 # position of the ball
9 # start in the center of the screen
10 x = graphwidth /2
11 y = graphheight / 2
12
13 # draw the ball initially on the screen
14 gosub drawball
15
16 # loop and wait for the user to press a key
17 while true
18 k = key
19 if k = asc("I") then
20 y = y - ballradius
21 if y < ballradius then y = graphheight -

ballradius
22 gosub drawball
23 end if
24 if k = asc("J") then
25 x = x - ballradius
26 if x < ballradius then x = graphwidth -

ballradius
27 gosub drawball
28 end if
29 if k = asc("K") then
30 x = x + ballradius
31 if x > graphwidth - ballradius then x =

ballradius
32 gosub drawball
33 end if
34 if k = asc("M") then
35 y = y + ballradius
36 if y > graphheight - ballradius then y =

ballradius
37 gosub drawball
38 end if
39 if k = asc("Q") then end

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 129

40 end while
41
42 drawball:
43 color white
44 rect 0, 0, graphwidth, graphheight
45 color red
46 circle x, y, ballradius
47 refresh
48 return

Program 58: Move Ball

Sample Output 58: Move
Ball

The big program this chapter is a game using the keyboard.
Random letters are going to fall down the screen and you
score points by pressing the key as fast as you can.

1 # fallinglettergame.kbs

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 130

2
3 speed = .15 # drop speed - lower to make faster
4 nletters = 10 # letters to play
5
6 score = 0
7 misses = 0
8 color black
9
10 fastgraphics
11
12 clg
13 font "Tahoma", 20, 50
14 text 20, 80, "Falling Letter Game"
15 text 20, 140, "Press Any Key to Start"
16 refresh
17 # clear keyboard and wait for any key to be

pressed
18 k = key
19 while key = 0
20 pause speed
21 end while
22
23 for n = 1 to nletters
24 letter = int((rand * 26)) + asc("A")
25 x = 10 + rand * 225
26 for y = 0 to 250 step 20
27 clg
28 # show letter
29 font "Tahoma", 20, 50
30 text x, y, chr(letter)
31 # show score and points
32 font "Tahoma", 12, 50
33 value = (250 - y)
34 text 10, 270, "Value "+ value
35 text 200, 270, "Score "+ score
36 refresh

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 131

37 k = key
38 if k <> 0 then
39 if k = letter then
40 score = score + value
41 else
42 score = score - value
43 end if
44 goto nextletter
45 end if
46 pause speed
47 next y
48 misses = misses + 1
49 nextletter:
50 next n
51
52 clg
53 font "Tahoma", 20, 50
54 text 20, 40, "Falling Letter Game"
55 text 20, 80, "Game Over"
56 text 20, 120, "Score: " + score
57 text 20, 160, "Misses: " + misses
58 refresh
59 end

Program 59: Big Program - Falling Letter Game

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 11: Keyboard Control – Using the Keyboard to Do Things. Page 132

Sample Output 59: Big Program -
Falling Letter Game

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 133

Chapter 12: Images, WAVs, and Sprites

This chapter will introduce the really advanced multimedia and
graphical statements. Loading images from files, playing sounds
asynchronously from WAV files, and really cool animation using sprites.

Images From a File:

So far we have seen how to create shapes and graphics using the built
in drawing statements. The imgload statement allows you to load a
picture from a file and display it in your BASIC-256 programs.

1 # imgload_ball.kbs - Show Imgload
2 clg
3 for i = 1 to 50
4 imgload rand * graphwidth, rand *

graphheight, "greenball.png"
5 next i

Program 60: Imgload a Graphic

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 134

Sample Output 60: Imgload a
Graphic

Program 60 Shows an example of this statement in action. The last
argument is the name of a file on your computer. It needs to be in the
same folder as the program, unless you specify a full path to it. Also
notice that the coordinates (x,y) represent the CENTER of the loaded
image and not the top left corner.

Most of the time you will want to save the program into the
same folder that the image or sound file is in BEFORE you
run the program. This will set your current working directory
so that BASIC-256 can find the file to load.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 135

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the
graphics output area. The values of x and y represent the
location to place the CENTER of the image.

Images may be loaded from many different file formats,
including: BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where 1 is
full size. Also you may also rotate the image clockwise
around it's center by specifying how far to rotate as an angle
expressed in radians (0 to 2π).

The imgload statement also allows optional scaling and rotation like
the stamp statement does. Look at Program 61 for an example.

1 # imgload_picasso.kbs - Show Imgload with
rotation and scaling

2 graphsize 500,500
3 clg
4 for i = 1 to 50
5 imgload graphwidth/2, graphheight/2, i/50,

2*pi*i/50, "picasso_selfport1907.jpg"
6 next i
7 say "hello Picasso."

Program 61: Imgload a Graphic with Scaling and Rotation

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 136

Sample Output 61: Imgload a
Graphic with Scaling and Rotation

Playing Sounds From a WAV file:

So far we have explored making sounds and music using the sound
command and text to speech with the say statement. BASIC-256 will
also play sounds stored in WAV files. The playback of a sound from a
WAV file will happen in the background. Once the sound starts the
program will continue to the next statement and the sound will
continue to play.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 137

1 # spinner.kbs
2 fastgraphics
3 wavplay "roll.wav"
4
5 # setup spinner
6 angle = rand * 2 * pi
7 speed = rand * 2
8 color darkred
9 rect 0,0,300,300
10
11 for t = 1 to 100
12 # draw spinner
13 color white
14 circle 150,150,150
15 color black
16 line 150,300,150,0
17 line 300,150,0,150
18 text 100,100,"A"
19 text 200,100,"B"
20 text 200,200,"C"
21 text 100,200,"D"
22 color darkgreen
23 line 150,150,150 + cos(angle)*150, 150 +

sin(angle)*150
24 refresh
25 # update angle for next redraw
26 angle = angle + speed
27 speed = speed * .9
28 pause .05
29 next t
30
31 # wait for sound to complete
32 wavwait

Program 62: Spinner with Sound Effect

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 138

Sample Output 62: Spinner
with Sound Effect

wavplay filename
wavwait
wavstop

The wavplay statement loads a wave audio file (.wav) from
the current working folder and plays it. The playback will be
synchronous meaning that the next statement in the
program will begin immediately as soon as the audio begins
playing.

Wavstop will cause the currently playing wave audio file to
stop the synchronous playback and wavwait will cause the
program to stop and wait for the currently playing sound to
complete.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 139

Moving Images - Sprites:

Sprites are special graphical objects that can be moved around the
screen without having to redraw the entire screen. In addition to being
mobile you can detect when one sprite overlaps (collides) with another.
Sprites make programming complex games and animations much
easier.

1 # sprite_1ball.kbs
2
3 color white
4 rect 0, 0, graphwidth, graphheight
5
6 spritedim 1
7
8 spriteload 0, "blueball.png"
9 spriteplace 0, 100,100
10 spriteshow 0
11
12 dx = rand * 10
13 dy = rand * 10
14
15 while true
16 if spritex(0) <=0 or spritex(0) >= graphwidth

-1 then
17 dx = dx * -1
18 wavplay

"4359__NoiseCollector__PongBlipF4.wav"
19 end if
20 if spritey(0) <= 0 or spritey(0) >=

graphheight -1 then
21 dy = dy * -1
22 wavplay

"4361__NoiseCollector__pongblipA_3.wav"

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 140

23 endif
24 spritemove 0, dx, dy
25 pause .05
26 end while

Program 63: Bounce a Ball with Sprite and Sound Effects

Sample Output 63: Bounce a
Ball with Sprite and Sound
Effects

As you can see in Program 63 the code to make a ball bounce around
the screen, with sound effects, is much easier than earlier programs to
do this type of animation. When using sprites we must tell BASIC-256
how many there will be (spritedim), we need to set them up
(spriteload or spriteplace), make them visible (spriteshow), and
then move them around (spritemove). In addition to these
statements there are functions that will tell us where the sprite is on
the screen (spritex and spritey), how big the sprite is (spritew and
spriteh) and if the sprite is visible (spritev).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 141

spritedim numberofsprites

The spritedim statement initializes, or allocates in memory,
places to store the specified number of sprites. You may
allocate as many sprites as your program may require but
your program may slow down if you create too many sprites.

spriteload spritenumber, filename

This statement reads an image file (GIF, BMP, PNG, JPG, or
JPEG) from the specified path and creates a sprite.

By default the sprite will be placed with its center at 0,0 and
it will be hidden. You should move the sprite to the desired
position on the screen (spritemove or spriteplace) and
then show it (spriteshow).

spritehide spritenumber
spriteshow spritenumber

The spriteshow statement causes a loaded, created, or
hidden sprite to be displayed on the graphics output area.

Spritehide will cause the specified sprite to not be drawn
on the screen. It will still exist and may be shown again
later.

spriteplace spritenumber, x, y

The spriteplace statement allows you to place a sprite's
center at a specific location on the graphics output area.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 142

spritemove spritenumber, dx, dy

Move the specified sprite x pixels to the right and y pixels
down. Negative numbers can also be specified to move the
sprite left and up.

A sprite's center will not move beyond the edge of the
current graphics output window (0,0) to (graphwidth-1,
graphheight-1).

You may move a hidden sprite but it will not be displayed
until you show the sprite using the showsprite statement.

spritev(spritenumber)

This function returns a true value if a loaded sprite is
currently displayed on the graphics output area. False will
be returned if it is not visible.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 143

spriteh(spritenumber)
spritew(spritenumber)
spritex(spritenumber)
spritey(spritenumber)

These functions return various pieces of information about a
loaded sprite.

spriteh Returns the height of a sprite in pixels.

spritew Returns the width of a sprite in pixels.

spritex Returns the position on the x axis of the
center of the sprite.

spritey Returns the position on the y axis of the
center of the sprite.

The second sprite example (Program 64) we now have two sprites.
The first one (number zero) is stationary and the second one (number
one) will bounce off of the walls and the stationary sprite.

1 # sprite_bumper.kbs
2
3 color white
4 rect 0, 0, graphwidth, graphheight
5
6 spritedim 2
7
8 # stationary bumber
9 spriteload 0, "paddle.png"
10 spriteplace 0,graphwidth/2,graphheight/2
11 spriteshow 0
12
13 # moving ball
14 spriteload 1, "blueball.png"

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 144

15 spriteplace 1, 50, 50
16 spriteshow 1
17 dx = rand * 5 + 5
18 dy = rand * 5 + 5
19
20 while true
21 if spritex(1) <=0 or spritex(1) >= graphwidth

-1 then
22 dx = dx * -1
23 end if
24 if spritey(1) <= 0 or spritey(1) >=

graphheight -1 then
25 dy = dy * -1
26 end if
27 if spritecollide(0,1) then
28 dy = dy * -1
29 print "bump"
30 end if
31 spritemove 1, dx, dy
32 pause .05
33 end while

Program 64: Sprite Collision

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 145

Sample Output 64: Sprite
Collision

spritecollide(spritenumber1, spritenumber2)

This function returns true of the two sprites collide with or
overlap each other.

The “Big Program” for this chapter uses sprites and sounds
to create a paddle ball game.

1 # sprite_paddleball.kbs
2
3 color white
4 rect 0, 0, graphwidth, graphheight
5

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 146

6 spritedim 2
7
8 spriteload 1, "greenball.png"
9 spriteplace 1, 100,100
10 spriteshow 1
11 spriteload 0, "paddle.png"
12 spriteplace 0, 100,270
13 spriteshow 0
14
15 dx = rand * .5 + .25
16 dy = rand * .5 + .25
17
18 bounces = 0
19
20 while spritey(1) < graphheight -1
21 k = key
22 if chr(k) = "K" then
23 spritemove 0, 20, 0
24 end if
25 if chr(k) = "J" then
26 spritemove 0, -20, 0
27 end if
28 if spritecollide(0,1) then
29 # bounce back ans speed up
30 dy = dy * -1
31 dx = dx * 1.1
32 bounces = bounces + 1
33 wavstop
34 wavplay

"96633__CGEffex__Ricochet_metal5.wav"
35 # move sprite away from paddle
36 while spritecollide(0,1)
37 spritemove 1, dx, dy
38 end while
39 end if
40 if spritex(1) <=0 or spritex(1) >= graphwidth

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 147

-1 then
41 dx = dx * -1
42 wavstop
43 wavplay

"4359__NoiseCollector__PongBlipF4.wav"
44 end if
45 if spritey(1) <= 0 then
46 dy = dy * -1
47 wavstop
48 wavplay

"4361__NoiseCollector__pongblipA_3.wav"
49 end if
50 spritemove 1, dx, dy
51 end while
52
53 print "You bounced the ball " + bounces + "

times."

Program 65: Paddleball with Sprites

Sample Output 65:
Paddleball with Sprites

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 12: Images, WAVs, and Sprites Page 148

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 149

Chapter 13: Arrays – Collections of
Information.

We have used simple string and numeric variables in many programs,
but they can only contain one value at a time. Often we need to work
with collections or lists of values. We can do this with either one-
dimensioned or two-dimensioned arrays. This chapter will show you
how to create, initialize, use, and re-size arrays.

One-Dimensional Arrays of Numbers:

A one-dimensional array allows us to create a list in memory and to
access the items in that list by a numeric address (called an index).
Arrays can be either numeric or string depending on the type of
variable used in the dim statement.

1 # numeric1d.kbs
2
3 dim a(10)
4
5 a[0] = 100
6 a[1] = 200
7 a[3] = a[1] + a[2]
8
9 input "Enter a number", a[9]
10 a[8] = a[9] - a[3]
11
12 for t = 0 to 9
13 print "a[" + t + "] = " + a[t]
14 next t

Program 66: One-dimensional Numeric Array

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 150

Enter a number63
a[0] = 100
a[1] = 200
a[2] = 0
a[3] = 200
a[4] = 0
a[5] = 0
a[6] = 0
a[7] = 0
a[8] = -137
a[9] = 63

Sample Output 66: One-dimensional Numeric Array

dim variable(items)
dim variable$(items)
dim variable(rows, columns)
dim variable$(rows, columns)

The dim statement creates an array in the computer's
memory the size that was specified in the parenthesis. Sizes
(items, rows, and columns) must be integer values greater
than one (1).

The dim statement will initialize the elements in the new
array with either zero (0) if numeric or the empty string (“”),
depending on the type of variable.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 151

variable[index]
variable[rowindex, columnindex]
variable$[index]
variable$[rowindex, columnindex]

You can use an array reference (variable with index(s) in
square brackets) in your program almost anywhere you can
use a simple variable. The index or indexes must be integer
values between zero (0) and one less than the size used in
the dim statement.

It may be confusing, but BASIC-256 uses zero (0) for the first
element in an array and the last element has an index one
less than the size. Computer people call this a zero-indexed
array.

We can use arrays of numbers to draw many balls bouncing on the
screen at once. Program 66 uses 5 arrays to store the location of each
of the balls, it's direction, and color. Loops are then used to initialize
the arrays and to animate the balls. This program also uses the rgb()
function to calculate and save the color values for each of the balls.

1 # manyballbounce.kbs
2 fastgraphics
3
4 r = 10 # size of ball
5 balls = 50 # number of balls
6
7 dim x(balls)
8 dim y(balls)
9 dim dx(balls)
10 dim dy(balls)
11 dim colors(balls)
12

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 152

13 for b = 0 to balls-1
14 # starting position of balls
15 x[b] = 0
16 y[b] = 0
17 # speed in x and y directions
18 dx[b] = rand * r + 2
19 dy[b] = rand * r + 2
20 # each ball has it's own color
21 colors[b] = rgb(rand*256, rand*256, rand*256)
22 next b
23
24 color green
25 rect 0,0,300,300
26
27 while true
28 # erase screen
29 clg
30 # now position and draw the balls
31 for b = 0 to balls -1
32 x[b] = x[b] + dx[b]
33 y[b] = y[b] + dy[b]
34 # if off the edges turn the ball around
35 if x[b] < 0 or x[b] > 300 then
36 dx[b] = dx[b] * -1
37 end if
38 # if off the top of bottom turn the ball

around
39 if y[b] < 0 or y[b] > 300 then
40 dy[b] = dy[b] * -1
41 end if
42 # draw new ball
43 color colors[b]
44 circle x[b],y[b],r
45 next b
46 # update the display
47 refresh

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 153

48 pause .05
49 end while

Program 67: Bounce Many Balls

Sample Output 67: Bounce Many
Balls

rgb(redexp, greenexp, blueexp)

The rgb function returns a single number that represents a
color expressed by the three values. Remember that color
component values have the range from 0 to 255.

Another example of a ball bouncing can be seen in Program 68. This
second example uses sprites and two arrays to keep track of the
direction each sprite is moving.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 154

1 #manyballsprite.kbs
2
3 # another way to bounce many balls using sprites
4
5 fastgraphics
6 color white
7 rect 0, 0, graphwidth, graphheight
8
9 n = 20
10 spritedim n
11
12 dim dx(n)
13 dim dy(n)
14
15 for b = 0 to n-1
16 spriteload b, "greenball.png"
17 spriteplace b,graphwidth/2,graphheight/2
18 spriteshow b
19 dx[b] = rand * 5 + 2
20 dy[b] = rand * 5 + 2
21 next b
22
23 while true
24 for b = 0 to n-1
25 if spritex(b) <=0 or spritex(b) >=

graphwidth -1 then
26 dx[b] = dx[b] * -1
27 end if
28 if spritey(b) <= 0 or spritey(b) >=

graphheight -1 then
29 dy[b] = dy[b] * -1
30 end if
31 spritemove b, dx[b], dy[b]
32 next b
33 refresh

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 155

34 end while

Program 68: Bounce Many Balls Using Sprites

Sample Output 68: Bounce Many
Balls Using Sprites

Arrays of Strings:

Arrays can also be used to store string values. To create a string array
use a string variable in the dim statement. All of the rules about
numeric arrays apply to a string array except the data type is different.
You can see the use of a string array in Program 69.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 156

1 # listoffriends.kbs
2 print "make a list of my friends"
3 input "how many friends do you have?", n
4
5 dim names$(n)
6
7 for i = 0 to n-1
8 input "enter friend name ?", names$[i]
9 next i
10
11 cls
12 print "my friends"
13 for i = 0 to n-1
14 print "friend number ";
15 print i + 1;
16 print " is " + names$[i]
17 next i

Program 69: List of My Friends

make a list of my friends
how many friends do you have?3
enter friend name ?Bill
enter friend name ?Ken
enter friend name ?Sam
 - screen clears -
my friends
friend number 1 is Bill
friend number 2 is Ken
friend number 3 is Sam

Sample Output 69: List of My Friends

Assigning Arrays:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 157

We have seen the use of the curly brackets ({}) to play music, draw
polygons, and define stamps. The curly brackets can also be used to
assign an entire array with custom values.

1 # arrayassign.kbs
2 dim number(3)
3 dim name$(3)
4
5 number = {1, 2, 3}
6 name$ = {"Bob", "Jim", "Susan"}
7
8 for i = 0 to 2
9 print number[i] + " " + name$[i]
10 next i

Program 70: Assigning an Array With a List

1 Bob
2 Jim
3 Susan

Sample Output 70: Assigning an Array With a List

array = {value0, value1, … }
array$ = {value0, value1, … }

An array may be assigned values (starting with index 0) from
a list of values enclosed in curly braces. This works for
numeric and string arrays.

Sound and Arrays:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 158

In Chapter 3 we saw how to use a list of frequencies and durations
(enclosed in curly braces) to play multiple sounds at once. The sound
statement will also accept a list of frequencies and durations from an
array. The array should have an even number of elements; the
frequencies should be stored in element 0, 2, 4, …; and the durations
should be in elements 1, 3, 5, ….

The sample (Program 71) below uses a simple linear formula to make a
fun sonic chirp.

1 # spacechirp.kbs
2
3 # even values 0,2,4... - frequency
4 # odd values 1,3,5... - duration
5
6 # chirp starts at 100hz and increases by 40 for

each of the 50 total sounds in list, duration is
always 10

7
8 dim a(100)
9 for i = 0 to 98 step 2
10 a[i] = i * 40 + 100
11 a[i+1] = 10
12 next i
13 sound a

Program 71: Space Chirp Sound

What kind of crazy sounds can you program. Experiment
with the formulas you use to change the frequencies and
durations.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 159

Graphics and Arrays:

In Chapter 8 we also saw the use of lists for creating polygons and
stamps. Arrays may also be used to draw stamps and polygons. This
may help simplify your code by allowing the same stamp or polygon to
be defined once, stored in an array, and used in various places in your
program.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 160

In an array used for stamps and polygons, the even elements (0, 2, 4,
…) contain the x value for each of the points and the odd element (1,
3, 5, …) contain the y value for the points. The array will have two
values for each point in the shape.

In Program 72 we will use the stamp from the mouse chapter to draw a
big X with a shadow. This is accomplished by stamping a gray shape
shifted in the direction of the desired shadow and then stamping the
object that is projecting the shadow.

1 # shadowstamp.kbs
2
3 dim xmark(24)
4 xmark = {-1, -2, 0, -1, 1, -2, 2, -1, 1, 0, 2, 1,

1, 2, 0, 1, -1, 2, -2, 1, -1, 0, -2, -1}
5
6 clg
7 color grey
8 stamp 160,165,50,xmark
9 color black
10 stamp 150,150,50,xmark

Program 72: Shadow Stamp

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 161

Sample Output 72: Shadow
Stamp

Arrays can also be used to create stamps or polygons mathematically.
In Program 73 we create an array with 10 elements (5 points) and
assign random locations to each of the points to draw random
polygons. BASIC-256 will fill the shape the best it can but when lines
cross, as you will see, the fill sometimes leaves gaps and holes.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 162

1 # mathpoly.kbs
2
3 dim shape(10)
4
5 for t = 0 to 8 step 2
6 x = 300 * rand
7 y = 300 * rand
8 shape[t] = x
9 shape[t+1] = y
10 next t
11
12 clg
13 color black
14 poly shape

Program 73: Randomly Create a Polygon

Sample Output 73: Randomly
Create a Polygon

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 163

Advanced - Two Dimensional Arrays:

So far in this chapter we have explored arrays as lists of numbers or
strings. We call these simple arrays one-dimensional arrays because
they resemble a line of values. Arrays may also be created with two-
dimensions representing rows and columns of data. Program 74 uses
both one and two-dimensional arrays to calculate student's average
grade.

1 # grades.kbs
2 # calculate average grades for each student
3 # and whole class
4
5 nstudents = 3 # number of students
6 nscores = 4 # number of scores per student
7
8 dim students$(nstudents)
9
10 dim grades(nstudents, nscores)
11 # store the scores as columns and the students as

rows
12 # first student
13 students$[0] = "Jim"
14 grades[0,0] = 90
15 grades[0,1] = 92
16 grades[0,2] = 81
17 grades[0,3] = 55
18 # second student
19 students$[1] = "Sue"
20 grades[1,0] = 66
21 grades[1,1] = 99
22 grades[1,2] = 98
23 grades[1,3] = 88
24 # third student

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 164

25 students$[2] = "Tony"
26 grades[2,0] = 79
27 grades[2,1] = 81
28 grades[2,2] = 87
29 grades[2,3] = 73
30
31 total = 0
32 for row = 0 to nstudents-1
33 studenttotal = 0
34 for column = 0 to nscores-1
35 studenttotal = studenttotal + grades[row,

column]
36 total = total + grades[row, column]
37 next column
38 print students$[row] + "'s average is ";
39 print studenttotal / nscores
40 next row
41 print "class average is ";
42 print total / (nscores * nstudents)
43
44 end

Program 74: Grade Calculator

Jim's average is 79.5
Sue's average is 87.75
Tony's average is 80
class average is 82.416667

Sample Output 74: Grade Calculator

Really Advanced - Array Sizes:

Sometimes we need to create programming code that would work with
an array of any size. If you specify a question mark as a index, row, or

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 165

column number in the square bracket reference of an array BASIC-256
will return the dimensioned size. In Program 70 we modified Program
67 to display the array regardless of it's length. You will see the
special [?] used on line 16 to return the current size of the array.

1 # size.kbs
2 dim number(3)
3 number = {77, 55, 33}
4 print "before"
5 gosub shownumberarray
6
7 # create a new element on the end
8 redim number(4)
9 number[3] = 22
10 print "after"
11 gosub shownumberarray
12 #
13 end
14 #
15 shownumberarray:
16 for i = 0 to number[?] - 1
17 print i + " " + number[i]
18 next i
19 return

Program 75: Get Array Size

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 166

before
0 77
1 55
2 33
after
0 77
1 55
2 33
3 22

Sample Output 75: Get Array Size

array[?]
array$[?]
array[?,]
array$[?,]
array[,?]
array$[,?]

The [?] reference returns the length of a one-dimensional
array or the total number of elements (rows * column) in a
two-dimensional array. The [?,] reference returns the
number of rows and the [,?] reference returns the number of
columns of a two dimensional array.

Really Really Advanced - Resizing Arrays:

BASIC-256 will also allow you to re-dimension an existing array. The
redim statement will allow you to re-size an array and will preserve the
existing data. If the new array is larger, the new elements will be filled
with zero (0) or the empty string (“”). If the new array is smaller, the
values beyond the new size will be truncated (cut off).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 167

1 # redim.kbs
2 dim number(3)
3 number = {77, 55, 33}
4 # create a new element on the end
5 redim number(4)
6 number[3] = 22
7 #
8 for i = 0 to 3
9 print i + " " + number[i]
10 next i

Program 76: Re-Dimension an Array

0 77
1 55
2 33
3 22

Sample Output 76: Re-Dimension an Array

redim variable(items)
redim variable$(items)
redim variable(rows, columns)
redim variable$(rows, columns)

The redim statement re-sizes an array in the computer's
memory. Data previously stored in the array will be kept, if
it fits.

When resizing two-dimensional arrays the values are copied
in a linear manner. Data may be shifted in an unwanted
manner if you are changing the number of columns.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 168

The “Big Program” for this chapter uses three numeric
arrays to store the positions and speed of falling space
debris. You are not playing pong but you are trying to avoid
all of them to score points.

1 # spacewarp.kbs
2 # The falling space debris game
3
4 balln = 5 # number of balls
5 dim ballx(balln) # arrays to hold ball position

and speed
6 dim bally(balln)
7 dim ballspeed(balln)
8 ballr = 10 # radius of balls
9
10 minx = ballr # minimum x value for balls
11 maxx = graphwidth - ballr # maximum x value

for balls
12 miny = ballr # minimum y value for balls
13 maxy = graphheight - ballr # maximum y value

for balls
14 score = 0 # initial score
15 playerw = 30 # width of player
16 playerm = 10 # size of player move
17 playerh = 10 # height of player
18 playerx = (graphwidth - playerw)/2 # initial

position of player
19 keyj = asc("J") # value for the 'j' key
20 keyk = asc("K") # value for the 'k' key
21 keyq = asc("Q") # value for the 'q' key
22 growpercent = .20 # random growth - bigger is

faster
23 speed = .15 # the lower the faster

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 169

24
25 print "spacewarp - use j and k keys to avoid the

falling space debris"
26 print "q to quit"
27
28 fastgraphics
29
30 # setup initial ball positions and speed
31 for n = 0 to balln-1
32 gosub setupball
33 next n
34
35 more = true
36 while more
37 pause speed
38 score = score + 1
39
40 # clear screen
41 color black
42 rect 0, 0, graphwidth, graphheight
43
44 # draw balls and check for collission
45 color white
46 for n = 0 to balln-1
47 bally[n] = bally[n] + ballspeed[n]
48 if bally[n] > maxy then gosub setupball
49 circle ballx[n], bally[n], ballr
50 if ((bally[n]) >= (maxy-playerh-ballr)) and

((ballx[n]+ballr) >= playerx) and ((ballx[n]-
ballr) <= (playerx+playerw)) then more = false

51 next n
52
53 # draw player
54 color red
55 rect playerx, maxy - playerh, playerw, playerh
56 refresh
57

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 170

58 # make player bigger
59 if (rand<growpercent) then playerw = playerw +

1
60
61 # get player key and move if key pressed
62 k = key
63 if k = keyj then playerx = playerx - playerm
64 if k = keyk then playerx = playerx + playerm
65 if k = keyq then more = false
66
67 # keep player on screen
68 if playerx < 0 then playerx = 0
69 if playerx > graphwidth - playerw then playerx

= graphwidth - playerw
70
71 end while
72
73 print "score " + string(score)
74 print "you died."
75 end
76
77 setupball:
78 bally[n] = miny
79 ballx[n] = int(rand * (maxx-minx)) + minx
80 ballspeed[n] = int(rand * (2*ballr)) + 1
81 return

Program 77: Big Program - Space Warp Game

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 171

Sample Output 77: Big Program -
Space Warp Game

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 13: Arrays – Collections of Information. Page 172

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 173

Chapter 14: Mathematics – More Fun
With Numbers.

In this chapter we will look at some additional mathematical operators
and functions that work with numbers. Topics will be broken down into
four sections: 1) new operators; 2) new integer functions, 3) new
floating point functions, and 4) trigonometric functions.

New Operators:

In addition to the basic mathematical operations we have been using
since the first chapter, there are three more operators in BASIC-256.
Operations similar to these three operations exist in most computer
languages. They are the operations of modulo, integer division, and
power.

Operation Operator Description

Modulo % Return the remainder of an integer
division.

Integer Division \ Return the whole number of times one
integer can be divided into another.

Power ^ Raise a number to the power of another
number.

Modulo Operator:

The modulo operation returns the remainder part of integer division.
When you do long division with whole numbers, you get a remainder –

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 174

that is the same as the modulo.

1 # mod.kbs
2 input "enter a number ", n
3 if n % 2 = 0 then print "divisible by 2"
4 if n % 3 = 0 then print "divisible by 3"
5 if n % 5 = 0 then print "divisible by 5"
6 if n % 7 = 0 then print "divisible by 7"
7 end

Program 78: The Modulo Operator

enter a number 10
divisible by 2
divisible by 5

Sample Output 78: The Modulo Operator

expression1 % expression2

The Modulo (%) operator performs integer division of
expression1 divided by expression2 and returns the
remainder of that process.

If one or both of the expressions are not integer values
(whole numbers) they will be converted to an integer value
by truncating the decimal (like in the int() function) portion
before the operation is performed.

You might not think it, but the modulo operator (%) is used quite often
by programmers. Two common uses are; 1) to test if one number
divides into another (Program 78) and 2) to limit a number to a specific
range (Program 79).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 175

1 # moveballmod.kbs
2 # rewrite of moveball.kbs using the modulo

operator to wrap the ball around the screen
3
4 print "use i for up, j for left, k for right, m

for down, q to quit"
5
6 fastgraphics
7 clg
8 ballradius = 20
9
10 # position of the ball
11 # start in the center of the screen
12 x = graphwidth /2
13 y = graphheight / 2
14
15 # draw the ball initially on the screen
16 gosub drawball
17
18 # loop and wait for the user to press a key
19 while true
20 k = key
21 if k = asc("I") then
22 # y can go negative, + graphheight keeps it

positive
23 y = (y - ballradius + graphheight) %

graphheight
24 gosub drawball
25 end if
26 if k = asc("J") then
27 x = (x - ballradius + graphwidth) %

graphwidth
28 gosub drawball
29 end if
30 if k = asc("K") then

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 176

31 x = (x + ballradius) % graphwidth
32 gosub drawball
33 end if
34 if k = asc("M") then
35 y = (y + ballradius) % graphheight
36 gosub drawball
37 end if
38 if k = asc("Q") then end
39 end while
40
41 drawball:
42 color white
43 rect 0, 0, graphwidth, graphheight
44 color red
45 circle x, y, ballradius
46 refresh
47 return

Program 79: Move Ball - Use Modulo to Keep on Screen

Integer Division Operator:

The Integer Division (\) operator does normal division but it works only
with integers (whole numbers) and returns an integer value. As an
example, 13 divided by 4 is 3 remainder 1 – so the result of the integer
division is 3.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 177

1 # integerdivision.kbs
2 input "dividend ", dividend
3 input "divisor ", divisor
4 print dividend + " / " + divisor + " is ";
5 print dividend \ divisor;
6 print "r";
7 print dividend % divisor;

Program 80: Check Your Long Division

dividend 43
divisor 6
43 / 6 is 7r1

Sample Output 80: Check Your Long Division

expression1 \ expression2

The Integer Division (\) operator performs division of
expression1 / expression2 and returns the whole number of
times expression1 goes into expression2.

If one or both of the expressions are not integer values
(whole numbers), they will be converted to an integer value
by truncating the decimal (like in the int() function) portion
before the operation is performed.

Power Operator:

The power operator will raise one number to the power of another
number.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 178

1 # power.kbs
2 for t = 0 to 16
3 print "2 ^ " + t + " = ";
4 print 2 ^ t
5 next t

Program 81: The Powers of Two

2 ^ 0 = 1
2 ^ 1 = 2
2 ^ 2 = 4
2 ^ 3 = 8
2 ^ 4 = 16
2 ^ 5 = 32
2 ^ 6 = 64
2 ^ 7 = 128
2 ^ 8 = 256
2 ^ 9 = 512
2 ^ 10 = 1024
2 ^ 11 = 2048
2 ^ 12 = 4096
2 ^ 13 = 8192
2 ^ 14 = 16384
2 ^ 15 = 32768
2 ^ 16 = 65536

Sample Output 81: The Powers of Two

expression1 ^ expression2

The Power (^) operator raises expression1 to the
expression2 power.

The mathematical expression a=bc would be written in
BASIC-256 as a = b ^ c.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 179

New Integer Functions:

The three new integer functions in this chapter all deal with how to
convert strings and floating point numbers to integer values. All three
functions handle the decimal part of the conversion differently.

In the int() function the decimal part is just thrown away, this has the
same effect of subtracting the decimal part from positive numbers and
adding it to negative numbers. This can cause troubles if we are trying
to round and there are numbers less than zero (0).

The ceil() and floor() functions sort of fix the problem with int(). Ceil()
always adds enough to every floating point number to bring it up to the
next whole number while floor(0) always subtracts enough to bring the
floating point number down to the closest integer.

We have been taught to round a number by simply adding 0.5 and
drop the decimal part. If we use the int() function, it will work for
positive numbers but not for negative numbers. In BASIC-256 to round
we should always use a formula like a= floor b0.5 .

Function Description

int(expression) Convert an expression (string,
integer, or decimal value) to an
integer (whole number). When
converting a floating point value
the decimal part is truncated
(ignored). If a string does not
contain a number a zero is
returned.

ceil(expression) Converts a floating point value to
the next highest integer value.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 180

Function Description

floor(expression) Converts a floating point
expression to the next lowers
integer value. You should use this
function for rounding

a= floor b0.5 .

1 # intceilfloor.kbs
2 for t = 1 to 10
3 n = rand * 100 - 50
4 print n;
5 print " int=" + int(n);
6 print " ceil=" + ceil(n);
7 print " floor=" + floor(n)
8 next t

Program 82: Difference Between Int, Ceiling, and Floor

-46.850173 int=-46 ceil=-46 floor=-47
-43.071987 int=-43 ceil=-43 floor=-44
23.380133 int=23 ceil=24 floor=23
4.620722 int=4 ceil=5 floor=4
3.413543 int=3 ceil=4 floor=3
-26.608505 int=-26 ceil=-26 floor=-27
-18.813465 int=-18 ceil=-18 floor=-19
7.096065 int=7 ceil=8 floor=7
23.482759 int=23 ceil=24 floor=23
-45.463169 int=-45 ceil=-45 floor=-46

Sample Output 82: Difference Between Int, Ceiling, and Floor

New Floating Point Functions:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 181

The mathematical functions that wrap up this chapter are ones you
may need to use to write some programs. In the vast majority of
programs these functions will not be needed.

Function Description

float(expression) Convert expression (string, integer,
or decimal value) to a decimal
value. Useful in changing strings
to numbers. If a string does not
contain a number a zero is
returned.

abs(expression) Converts a floating point or integer
expression to an absolute value.

log(expression) Returns the natural logarithm (base
e) of a number.

log10(expression) Returns the base 10 logarithm of a
number.

Advanced - Trigonometric Functions:

Trigonometry is the study of angles and measurement. BASIC-256
includes support for the common trigonometric functions. Angular
measure is done in radians (0-2p). If you are using degrees (0-360) in
your programs you must convert to use the “trig” functions.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 182

Function Description

cos(expression) Return the cosine of an angle.

sin(expression) Return the sine of an angle.

tan(expression) Return the tangent of an angle.

degrees(expression) Convert Radians (0 – 2π) to
Degrees (0-360).

radians(expression) Convert Degrees (0-360) to
Radians (0 – 2π).

acos(expression) Return the inverse cosine.

asin(expression) Return the inverse sine.

atan(expression) Return the inverse tangent.

The discussion of the first three functions will refer to the sides of a
right triangle. Illustration 20 shows one of these with it's sides and
angles labeled.

Illustration 20: Right Triangle

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 183

Cosine:

A cosine is the ratio of the length of the adjacent leg over the length of

the hypotenuse cos A=
b
c

. The cosine repeats itself every 2π radians

and has a range from -1 to 1. Illustration 20 graphs a cosine wave
from 0 to 2π radians.

Illustration 21: Cos() Function

Sine:

The sine is the ratio of the adjacent side over the hypotenuse

sin A=
a
c

. The sine repeats itself every 2π radians and has a range

from -1 to 1. You have seen diagrams of sine waves in Chapter 3 as
music was discussed.

Illustration 22: Sin() Function

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 184

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 185

Tangent:

The tangent is the ratio of the adjacent side over the opposite side

tan A=
a
b

. The sine repeats itself every π radians and has a range

from -∞ to ∞. The tangent has this range because when the angle gets
very small the length of the opposite side becomes very small.

Illustration 23: Tan() Function

Degrees Function:

The degrees() function does the quick mathematical calculation to
convert an angle in radians to an angle in degrees. The formula used
is degrees=radians/ 2∗360 .

Radians Function:

The radians() function will convert degrees to radians using the
formula radians=degrees /360∗2 . Remember all of the trigonometric
functions in BASIC-256 use radians and not degrees to measure

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 186

angles.

Inverse Cosine:

The inverse cosine function acos() will return an angle measurement
in radians for the specified cosine value. This function performs the
opposite of the cos() function.

Illustration 24: Acos() Function

Inverse Sine:

The inverse sine function asin() will return an angle measurement in
radians for the specified sine value. This function performs the
opposite of the sin() function.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 187

Illustration 25: Asin() Function

Inverse Tangent:

The inverse tangent function atan() will return an angle measurement
in radians for the specified tangent value. This function performs the
opposite of the tan() function.

Illustration 26: Atan() Function

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 188

The big program this chapter allows the user to enter two
positive whole numbers and then performs long division.
This program used logarithms to calculate how long the
numbers are, modulo and integer division to get the
individual digits, and is generally a very complex program.
Don't be scared or put off if you don't understand exactly
how it works, yet.

1 # longdivision.kbs
2 # show graphically the long division of two

positive integers
3
4 input "dividend? ", b
5 input "divisor? ", a
6
7 originx = 100
8 originy = 20
9 height = 12
10 width = 9
11 margin = 2
12
13 b = int(abs(b))
14 a = int(abs(a))
15
16 clg
17
18 # display original problem
19 row = 0
20 col = -1
21 number = a
22 underline = false
23 gosub drawrightnumber
24 row = 0
25 col = 0
26 number = b

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 189

27 gosub drawleftnumber
28 line originx - margin, originy, originx + (width

* 11), originy
29 line originx - margin, originy, originx - margin,

originy + height
30
31 # calculate how many digits are in the dividend
32 lb = ceil(log10(abs(b)))
33
34 r = 0
35 bottomrow = 0 ## row for bottom calculation

display
36
37 # loop through all of the digits from the left to

the right
38 for tb = lb-1 to 0 step -1
39 # drop down the next digit to running

remainder and remove from dividend
40 r = r * 10
41 r = r + (b \ (10 ^ tb))
42 b = b % (10 ^ tb)
43 # display running remainder
44 row = bottomrow
45 bottomrow = bottomrow + 1
46 col = lb - tb - 1
47 number = r
48 underline = false
49 gosub drawrightnumber
50 # calculate new digit in answer and display
51 digit = r \ a
52 row = -1
53 col = lb - tb - 1
54 gosub drawdigit
55 # calculate quantity to remove from running

and display
56 number = digit * a
57 r = r - number

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 190

58 col = lb - tb - 1
59 row = bottomrow
60 bottomrow = bottomrow + 1
61 underline = true
62 gosub drawrightnumber
63 next tb
64 #
65 # print remainder at bottom
66 row = bottomrow
67 col = lb - 1
68 number = r
69 underline = false
70 gosub drawrightnumber
71 end
72
73 drawdigit:
74 # pass row and col convert to x y
75 text col * width + originx, row * height +

originy, digit
76 if underline then
77 line col * width + originx - margin, (row + 1)

* height + originy, (col + 1) * width + originx -
margin, (row + 1) * height + originy

78 end if
79 return
80
81 drawleftnumber:
82 # pass start row, col, and number - from left

column
83 if number < 10 then
84 digit = number
85 gosub drawdigit
86 else
87 lnumber = ceil(log10(abs(number)))
88 for tnumber = lnumber-1 to 0 step -1
89 digit = (number \ (10 ^ tnumber)) % 10
90 gosub drawdigit

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 191

91 col = col + 1
92 next tnumber
93 endif
94 return
95
96 drawrightnumber:
97 # pass start row, col, and number - from right

column
98 if number < 10 then
99 digit = number
100 gosub drawdigit
101 else
102 lnumber = ceil(log10(abs(number)))
103 for tnumber = 0 to lnumber - 1
104 digit = (number \ (10 ^ tnumber)) % 10
105 gosub drawdigit
106 col = col - 1
107 next tnumber
108 endif
109 return

Program 83: Big Program - Long Division

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 14: Mathematics – More Fun With Numbers. Page 192

dividend? 123456
divisor? 78

Sample Output 83: Big Program - Long Division (one)

Sample Output
83: Big Program
- Long Division

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 193

Chapter 15: Working with Strings.

We have used strings to store non-numeric information, build output,
and capture input. We have also seen, in Chapter 11, using the
Unicode values of single characters to build strings.

This chapter shows several new functions that will allow you to
manipulate string values.

The String Functions:

BASIC-256 includes eight common functions for the manipulation of
strings. Table 7 includes a summary of them.

Function Description

string(expression) Convert expression (string, integer,
or decimal value) to a string value.

length(string) Returns the length of a string.

left(string, length) Returns a string of length characters
starting from the left.

right(string, length) Returns a string of length characters
starting from the right.

mid(string, start, length) Returns a string of length characters
starting from the middle of a string.

upper(expression) Returns an upper case string.

lower(expression) Returns a lower case string.

instr(haystack, needle) Searches the string “haystack” for
the “needle” and returns it's location.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 194

Table 7: Summary of String Functions

String() Function:

The string() function will take an expression of any format and will
return a string. This function is a convenient way to convert an integer
or floating point number into characters so that it may be manipulated
as a string.

1 # string.kbs
2 a$ = string(10 + 13)
3 print a$
4 b$ = string(2 * pi)
5 print b$

Program 84: The String Function

23
6.283185

Sample Output 84: The String Function

string(expression)

Convert expression (string, integer, or decimal value) to a
string value.

Length() Function:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 195

The length() function will take a string expression and return it's length
in characters (or letters).

1 # length.kbs
2 # prints 6, 0, and 17
3 print length("Hello.")
4 print length("")
5 print length("Programming Rulz!")

Program 85: The Length Function

6
0
17

Sample Output 85: The Length Function

length(expression)

Returns the length of the string expression. Will return zero
(0) for the empty string “”.

Left(), Right() and Mid() Functions:

The left(), right(), and mid() functions will extract sub-strings (or
parts of a string) from a larger string.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 196

1 # leftrightmid.kbs
2 a$ = "abcdefghijklm"
3 # prints "abcd"
4 print left(a$,4)
5 # prints "lm"
6 print right(a$,2)
7 # prints "def" and "jklm"
8 print mid(a$,4,3)
9 print mid(a$,10,9)

Program 86: The Left, Right, and Mid Functions

abcd
kl
def
jklm

Sample Output 86: The Left, Right, and Mid Functions

left(string, length)

Return a sub-string from the left end of a string. If length is
equal or greater then the actual length of the string the
entire string will be returned.

right(string, length)

Return a sub-string from the right end of a string. If length
is equal or greater then the actual length of the string the
entire string will be returned.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 197

mid(string, start, length)

Return a sub-string of specified length from somewhere on
the middle of a string. The start parameter specifies where
the sub-string begins (1 = beginning of string).

Upper() and Lower() Functions:

The upper() and lower() functions simply will return a string of upper
case or lower case letters. These functions are especially helpful when
you are trying to perform a comparison of two strings and you do not
care what case they actually are.

1 # upperlower.kbs
2 a$ = "Hello."
3 # prints "hello."
4 print lower(a$)
5 # prints "HELLO."
6 print upper(a$)

Program 87: The Upper and Lower Functions

hello.
HELLO.

Sample Output 87: The Upper and Lower Functions

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 198

lower(string)
upper(string)

Returns an all upper case or lower case copy of the string
expression. Non-alphabetic characters will not be modified.

Instr() Function:

The instr() function searches a string for the first occurrence of
another string. The return value is the location in the big string of the
smaller string. If the substring is not found then the function will
return a zero (0).

1 # instr.kbs
2 a$ = "abcdefghijklm"
3 # find location of "hi"
4 print instr(a$,"hi")
5 # find location of "bye"
6 print instr(a$,"bye")

Program 88: The Instr Function

8
0

Sample Output 88: The Instr Function

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 199

instr(haystack, needle)

Find the sub-string (needle) in another string expression
(haystack). Return the character position of the start. If
sub-string is not found return a zero (0).

The decimal (base 10) numbering system that is most
commonly used uses 10 different digits (0-9) to represent
numbers.

Imagine if you will what would have happened if there were
only 5 digits (0-4) – the number 23 (2∗1013∗100) would
become
43 (4∗513∗50) to represent the same number of items.
This type of transformation is called radix (or base)
conversion.

The computer internally does not understand base 10
numbers but converts everything to base 2 (binary) numbers
to be stored in memory.

The “Big Program” this chapter will convert a positive
integer from any base 2 to 36 (where letters are used for the
11th - 26th digits) to any other base.

1 # radix.kbs
2 # convert a number from one base (2-36) to

another
3
4 digits$ = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
5
6 message$ = "from base"
7 gosub getbase
8 frombase = base

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 200

9
10 input "number in base " + frombase + " >",

number$
11 number$ = upper(number$)
12
13 # convert number to base 10 and store in n
14 n = 0
15 for i = 1 to length(number$)
16 n = n * frombase
17 n = n + instr(digits$, mid(number$, i, 1)) - 1
18 next i
19
20 message$ = "to base"
21 gosub getbase
22 tobase = base
23
24 # now build string in tobase
25 result$ = ""
26 while n <> 0
27 result$ = mid(digits$, n % tobase + 1, 1) +

result$
28 n = n \ tobase
29 end while
30
31 print "in base " + tobase + " that number is " +

result$
32 end
33
34 getbase: # get a base from 2 to 36
35 do
36 input message$+"> ", base
37 until base >= 2 and base <= 36
38 return

Program 89: Big Program - Radix Conversion

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 201

from base> 10
number in base 10 >999
to base> 16
in base 16 that number is 3E7

Sample Output 89: Big Program - Radix Conversion

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 15: Working with Strings. Page 202

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 203

Chapter 16: Files – Storing Information
For Later.

We have explored the computer's short term memory with variables
and arrays but how do we store those values for later? There are
many different techniques for long term data storage.

BASIC-256 supports writing and reading information from files on your
hard disk. That process of input and output is often written as I/O.

This chapter will show you how to read values from a file and then
write them for long term storage.

Reading Lines From a File:

Our first program using files is going to show you many of the
statements and constants you will need to use to manipulate file data.
There are several new statements and functions in this program.

1 #readlfile.kbs
2 input "file name>", fn$
3 if not exists(fn$) then
4 print fn$ + " does not exist."
5 end
6 end if
7 #
8 n = 0
9 open fn$
10 while not eof
11 l$ = readline
12 n = n + 1

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 204

13 print n + " " + l$
14 end while
15 #
16 print "the file " + fn$ + " is " + size + " bytes

long."
17 close

Program 90: Read Lines From a File

file name>test.txt
1 These are the times that
2 try men's souls.
3 - Thomas Paine
the file test.txt is 58 bytes long.

Sample Output 90: Read Lines From a File

exist(expression)

Look on the computer for a file name specified by the string
expression. Drive and path may be specified as part of the
file name, but if they are omitted then the current working
directory will be the search location.

Returns true if the file exists; else returns false.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 205

open expression
open (expression)
open filenumber, expression
open (filenumber, expression)

Open the file specified by the expression for reading and
writing to the specified file number. If the file does not exist
it will be created so that information may be added (see
write and writeline). Be sure to execute the close statement
when the program is finished with the file.

BASIC-256 may have a total of eight (8) files open 0 to 7. If
no file number is specified then the file will be opened as file
number zero (0).

eof
eof()
eof(filenumber)

The eof function returns a value of true if we are at the end
of the file for reading or false if there is still more data to be
read.

If filenumber is not specified then file number zero (0) will be
used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 206

readline
readline()
readline(filenumber)

Return a string containing the contents of an open file up to
the end of the current line. If we are at the end of the file [
eof(filenumber) = true] then this function will return the
empty string (“”).

If filenumber is not specified then file number zero (0) will be
used.

size
size()
size(filenumber)

This function returns the length of an open file in bytes.

If filenumber is not specified then file number zero (0) will be
used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 207

close
close()
close filenumber
close(filenumber)

The close statement will complete any pending I/O to the
file and allow for another file to be opened with the same
number.

If filenumber is not specified then file number zero (0) will be
used.

Writing Lines to a File:

In Program 90 we saw how to read lines from a file. The next two
programs show different variations of how to write information to a file.
In Program 91 we open and clear any data that may have been in the
file to add our new lines and in Program 92 we append our new lines to
the end (saving the previous data).

1 # resetwrite.kbs
2 open "resetwrite.dat"
3
4 print "enter a blank line to close file"
5
6 # clear file (reset) and start over
7 reset
8 repeat:
9 input ">", l$
10 if l$ <> "" then
11 writeline l$

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 208

12 goto repeat
13 end if
14
15 # go the the start and display contents
16 seek 0
17 k = 0
18 while not eof()
19 k = k + 1
20 print k + " " + readline()
21 end while
22
23 close
24 end

Program 91: Clear File and Write Lines

enter a blank line to close file
>this is some
>data, I am typing
>into the program.
>
1 this is some
2 data, I am typing
3 into the program.

Sample Output 91: Clear File and Write Lines

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 209

reset or
reset() or
reset filenumber
reset(filenumber)

Clear any data in an open file and move the file pointer to
the beginning.

If filenumber is not specified then file number zero (0) will be
used.

seek expression
seek(expression)
seek filenumber,expression
seek (filenumber,expression)

Move the file pointer for the next read or write operation to a
specific location in the file. To move the current pointer to
the beginning of the file use the value zero (0). To seek to
the end of a file use the size() function as the argument to
the see statement.

If filenumber is not specified then file number zero (0) will be
used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 210

writeline expression
writeline(expression)
writeline filenumber,expression
writeline (filenumber,expression)

Output the contents of the expression to an open file and
then append an end of line mark to the data. The file
pointer will be positioned at the end of the write so that the
next write statement will directly follow.

If filenumber is not specified then file number zero (0) will be
used.

1 # appendwrite.kbs
2 open "appendwrite.dat"
3
4 print "enter a blank line to close file"
5
6 # move file pointer to end of file and append
7 seek size()
8 repeat:
9 input ">", l$
10 if l$ <> "" then
11 writeline l$
12 goto repeat
13 end if
14
15 # move file pointer to beginning and show

contents
16 seek 0
17 k = 0
18 while not eof()
19 k = k + 1
20 print k + " " + readline()
21 end while

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 211

22
23 close
24 end

Program 92: Append Lines to a File

enter a blank line to close file
>sed sed sed
>vim vim vim
>
1 bar bar bar
2 foo foo foo
3 grap grap grap
4 sed sed sed
5 vim vim vim

Sample Output 92: Append Lines to a File

Read() Function and Write Statement:

In the first three programs of this chapter we have discussed the
readline() function and writeline statement. There are two other
statements that will read and write a file. They are the read() function
and write statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 212

read
read()
read(filenumber)

Read the next word or number (token) from a file. Tokens
are delimited by spaces, tab characters, or end of lines.
Multiple delimiters between tokens will be treated as one.

If filenumber is not specified then file number zero (0) will be
used.

write expression
write (expression)
write filenumber,expression
write (filenumber,expression)

Write the string expression to a file file. Do not add an end
of line or a delimiter.

If filenumber is not specified then file number zero (0) will be
used.

This program uses a single text file to help us maintain a list
of our friend's telephone numbers.

1 # phonelist.kbs
2 # add a phone number to the list and show
3 filename$ = "phonelist.txt"
4

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 213

5 print "phonelist.kbs - Manage your phone list."
6 do
7 input "Add, List, Quit (a/l/q)?",action$
8 if left(lower(action$),1) = "a" then gosub

addrecord
9 if left(lower(action$),1) = "l" then gosub

listfile
10 until left(lower(action$),1) = "q"
11 end
12
13 listfile:
14 if exists(filename$) then
15 # list the names and phone numbers in the file
16 open filename$
17 print "the file is " + size + " bytes long"
18 while not eof
19 # read next line from file and print it
20 print readline
21 end while
22 close
23 else
24 print "No phones on file. Add first."
25 end if
26 return
27
28 addrecord:
29 input "Name to add?", name$
30 input "Phone to add", phone$
31 open filename$
32 # seek to the end of the file
33 seek size()
34 # we are at end of file - add new line
35 writeline name$ + ", " + phone$
36 close
37 return

Program 93: Big Program - Phone List

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 16: Files – Storing Information For Later. Page 214

phonelist.kbs - Manage your phone list.
Add, List, Quit (a/l/q)?l
the file is 46 bytes long
jim, 555-5555
sam, 555-7777
doug, 555-3333
Add, List, Quit (a/l/q)?a
Name to add?ang
Phone to add555-0987
Add, List, Quit (a/l/q)?l
the file is 61 bytes long
jim, 555-5555
sam, 555-7777
doug, 555-3333
ang, 555-0987
Add, List, Quit (a/l/q)?q

Sample Output 93: Big Program - Phone List

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 215

Chapter 17: Stacks, Queues, Lists, and
Sorting

This chapter introduces a few advanced topics that are commonly
covered in the first Computer Science class at the University level. The
first three topics (Stack, Queue, and Linked List) are very common
ways that information is stored in a computer system. The last two are
algorithms for sorting information.

Stack:

A stack is one of the common data structures used by programmers to
do many tasks. A stack works like the “discard pile” when you play the
card game “crazy-eights”. When you add a piece of data to a stack it
is done on the top (called a “push”) and these items stack upon each
other. When you want a piece of information you take the top one off
the stack and reveal the next one down (called a “pop”). Illustration
27 shows a graphical example.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 216

Illustration 27: What is a Stack

The operation of a stack can also be described as “last-in, first-out” or
LIFO for short. The most recent item added will be the next item
removed. Program 94 implements a stack using an array and a pointer
to the most recently added item. In the “pushstack” subroutine you
will see array logic that will re-dimension the array to make sure there
is enough room available in the stack for virtually any number of items
to be added.

1 # stack.kbs
2 # implementing a stack using an array
3
4 dim stack(1) # array to hold stack with initial

size
5 nstack = 0 # number of elements on stack
6
7 value = 1
8 gosub pushstack
9 value = 2
10 gosub pushstack
11 value = 3

So You Want to Learn to Program?
© 2010 James M. Reneau.

Item

Item

Item

Item
Item

Push
(Add One)

Pop
(Take One)

Chapter 17: Stacks, Queues, Lists, and Sorting Page 217

12 gosub pushstack
13 value = 4
14 gosub pushstack
15 value = 5
16 gosub pushstack
17
18 while nstack > 0
19 gosub popstack
20 print value
21 end while
22
23 end
24
25 popstack: #
26 # get the top number from stack and set it in

value
27 if nstack = 0 then
28 print "stack empty"
29 else
30 nstack = nstack - 1
31 value = stack[nstack]
32 end if
33 return
34
35 pushstack: #
36 # push the number in the variable value onto the

stack
37 # nake the stack larger if it is full
38 if nstack = stack[?] then redim stack(stack[?] +

5)
39 stack[nstack] = value
40 nstack = nstack + 1
41 return

Program 94: Stack

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 218

Queue:

The queue (pronounced like the letter Q) is another very common data
structure. The queue, in its simplest form, is like the lunch line at
school. The first one in the line is the first one to get to eat.
Illustration 28 shows a block diagram of a queue.

Illustration 28: What is a Queue

The terms enqueue (pronounced in-q) and dequeue (pronounced dee-
q) are the names we use to describe adding a new item to the end of
the line (tail) or removing an item from the front of the line (head).
Sometimes this is described as a “first-in, first-out” or FIFO. The
example in Program 95 uses an array and two pointers that keep track
of the head of the line and the tail of the line.

1 # queue.kbs
2 # implementing a queue using an array

So You Want to Learn to Program?
© 2010 James M. Reneau.

ItemItem

Enqueue
(Add One)

Dequeue
(Take One)

Item

Item

Item Item

Chapter 17: Stacks, Queues, Lists, and Sorting Page 219

3
4 queuesize = 4 # maximum number of entries in

the queue at any one time
5 dim queue(queuesize) # array to hold queue with

initial size
6 tail = 0 # location in queue of next new entry
7 head = 0 # location in queue of next entry to

be returnrd (served)
8 inqueue = 0 # number of entries in queue
9
10 value = 1
11 gosub enqueue
12 value = 2
13 gosub enqueue
14
15 gosub dequeue
16 print value
17
18 value = 3
19 gosub enqueue
20 value = 4
21 gosub enqueue
22
23 gosub dequeue
24 print value
25 gosub dequeue
26 print value
27
28 value = 5
29 gosub enqueue
30 value = 6
31 gosub enqueue
32 value = 7
33 gosub enqueue
34
35 # empty everybody from the queue
36 while inqueue > 0

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 220

37 gosub dequeue
38 print value
39 end while
40
41 end
42
43 dequeue: #
44 if inqueue = 0 then
45 print "queue is empty"
46 else
47 inqueue = inqueue - 1
48 value = queue[head]
49 print "dequeue value=" + value + " from=" +

head + " inqueue=" + inqueue
50 # move head pointer - if we are at end of

array go back to the begining
51 head = head + 1
52 if head = queuesize then head = 0
53 end if
54 return
55
56 enqueue: #
57 if inqueue = queuesize then
58 print "queue is full"
59 else
60 inqueue = inqueue + 1
61 queue[tail] = value
62 print "enqueue value=" + value + " to=" +

tail + " inqueue=" + inqueue
63 # move tail pointer - if we are at end of

array go back to the begining
64 tail = tail + 1
65 if tail = queuesize then tail = 0
66 end if
67 return

Program 95: Queue

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 221

Linked List:

In most books the discussion of this material starts with the linked list.
Because BASIC-256 handles memory differently than many other
languages this discussion was saved after introducing stacks and
queues.

A linked list is a sequence of nodes that contains data and a pointer or
index to the next node in the list. In addition to the nodes with their
information we also need a pointer to the first node. We call the first
node the “Head”. Take a look at Illustration 29 and you will see how
each node points to another.

Illustration 29: Linked List

An advantage to the linked list, over an array, is the ease of inserting
or deleting a node. To delete a node all you need to do is change the
pointer on the previous node (Illustration 30) and release the discarded
node so that it may be reused.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Data Data Data

Pointer
to the
Head

Head Tail

Chapter 17: Stacks, Queues, Lists, and Sorting Page 222

Illustration 30: Deleting an Item from a Linked List

Inserting a new node is also as simple as creating the new node,
linking the new node to the next node, and linking the previous node to
the first node. Illustration 31 Shows inserting a new node into the
second position.

Illustration 31: Inserting an Item into a Linked List

Linked lists are commonly thought of as the simplest data structures.
In the BASIC language we can't allocate memory like in most
languages so we will simulate this behavior using arrays. In Program
96 we use the data$ array to store the text in the list, the nextitem
array to contain the index to the next node, and the freeitem array to
contain a stack of free (unused) array indexes.

1 # linkedlist.kbs

So You Want to Learn to Program?
© 2010 James M. Reneau.

Data Data Data

Pointer
to the
Head

Head Tail

X

Data Data Data

Pointer
to the
Head

Head Tail

Data

Chapter 17: Stacks, Queues, Lists, and Sorting Page 223

2
3 n = 8 # maximum size of list
4 dim data$(n) # data for item in list
5 dim nextitem(n) # pointer to next item in list
6 dim freeitem(n) # list of free items
7
8 # initialize freeitem stack
9 for t = 0 to n-1
10 freeitem[t] = t
11 next t
12 lastfree = n-1
13
14 head = -1 # start of list - -1 = pointer to

nowhere
15
16 # list of 3 items
17 text$ = "Head"
18 gosub append
19 text$ = "more"
20 gosub append
21 text$ = "stuff"
22 gosub append
23 gosub displaylist
24 gosub displayarrays
25 gosub wait
26
27 print "delete item 2"
28 r = 2
29 gosub delete
30 gosub displaylist
31 gosub displayarrays
32 gosub wait

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 224

33
34 print "insert item 1"
35 r = 1
36 text$ = "bar"
37 gosub insert
37 gosub displaylist
39 gosub displayarrays
40 gosub wait
41
42 print "insert item 2"
43 r = 2
44 text$ = "foo"
45 gosub insert
46 gosub displaylist
47 gosub displayarrays
48 gosub wait
49
50 print "delete item 1"
51 r = 1
52 gosub delete
53 gosub displaylist
54 gosub displayarrays
55 gosub wait
56
57 end
58
59 wait: ## wait for enter
60 input "press enter? ", garbage$
61 print
62 return
63

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 225

64 displaylist: # showlist by following the linked
list

65 print "list..."
66 k = 0
67 i = head
68 do
69 k = k + 1
70 print k + " ";
71 print data$[i]
72 i = nextitem[i]
73 until i = -1
74 return
75

displayarrays: # show data actually stored and
how

76 print "arrays..."
77 for i = 0 to n-1
78 print i + " " + data$[i] + " >" + nextitem[i]

;
79 for k = 0 to lastfree
80 if freeitem[k] = i then print " <<free";
81 next k
82 if head = i then print " <<head";
83 print
84 next i
85 return
86
87 insert: # insert text$ at position r
88 if r = 1 then
89 gosub createitem
90 nextitem[index] = head
91 head = index

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 226

92 else
93 k = 2
94 i = head
95 while i <> -1 and k <> r
96 k = k + 1
97 i = nextitem[i]
98 end while
99 if i <> -1 then
100 gosub createitem
101 nextitem[index] = nextitem[i]
102 nextitem[i] = index
103 else
104 print "can't insert beyond end of list"
105 end if
106 end if
107 return
108
109 delete: # delete element r from linked list
110 if r = 1 then
111 index = head
112 head = nextitem[index]
113 gosub freeitem
114 else
115 k = 2
116 i = head
117 while i <> -1 and k <> r
118 k = k + 1
119 i = nextitem[i]
120 end while
121 if i <> -1 then
122 index = nextitem[i]

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 227

123 nextitem[i] = nextitem[nextitem[i]]
124 gosub freeitem
125 else
126 print "can't delete beyond end of list"
127 end if
128 end if
129 return
130
131 append: # append text$ to end of linked list
132 if head = -1 then
133 gosub createitem
134 head = index
135 else
136 i = head
137 while nextitem[i] <> -1
138 i = nextitem[i]
139 end while
140 gosub createitem
141 nextitem[i] = index
142 endif
143 return
144
145 freeitem: # free element in index and add back

to the free stack
146 lastfree = lastfree + 1
147 freeitem[lastfree] = index
148 return
149
150 createitem: # save text$ in data and return

index to new location
151 if lastfree < 0 then
152 print "no free cell to allocate"

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 228

153 end
154 end if
155 index = freeitem[lastfree]
156 data$[index] = text$
157 nextitem[index] = -1
158 lastfree = lastfree - 1
159 return

Program 96: Linked List

Re-write Program 96 to implement a stack and a queue
using a linked list.

Slow and Inefficient Sort - Bubble Sort:

The “Bubble Sort” is probably the worst algorithm ever devised to sort
a list of values. It is very slow and inefficient except for small sets of
items. This is a classic example of a bad algorithm.

The only real positive thing that can be said about this algorithm is
that it is simple to explain and to implement. Illustration 32 shows a
flow-chart of the algorithm. The bubble sort goes through the array
over and over again swapping the order of adjacent items until the sort
is complete,

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 229

Illustration 32: Bubble Sort - Flowchart

1 # bubblesort.kbs
2 # implementing a simple sort
3
4 # a bubble sort is one of the SLOWEST algorithms
5 # for sorting but it is the easiest to implement
6 # and understand.
7 #
8 # The algorithm for a bubble sort is

So You Want to Learn to Program?
© 2010 James M. Reneau.

Start

set sorted flag to true

have we compared all
elements?

i = length(d) - 2

is the next element
less than the current?

d[i+1] > d[i]

move to next element
i = i+1

swap elements
t = d[i]

d[i] = d[i+1]
d[i+1] = t

and set sorted flag
to false

is array
sorted?

Finish

yes
no

yes

start with first two elements of array
i = 0

no

yesno

Chapter 17: Stacks, Queues, Lists, and Sorting Page 230

9 # 1. Go through the array swaping adjacent
values

10 # so that lower value comes first.
11 # 2. Do step 1 over and over until there have
12 # been no swaps (the array is sorted)
13 #
14
15 dim d(20)
16
17 # fill array with unsorted numbers
18 for i = 0 to d[?]-1
19 d[i] = rand * 1000
20 next i
21
22 print "*** Un-Sorted ***"
23 gosub displayarray
24
25 gosub bubblesort
26
27 print "*** Sorted ***"
28 gosub displayarray
29 end
30
31 displayarray:
32 # print out the array's values
33 for i = 0 to d[?]-1
34 print d[i] + " ";
35 next i
36 print
37 return
38
39 bubblesort:
40 do
41 sorted = true
42 for i = 0 to d[?] - 2
43 if d[i] > d[i+1] then

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 231

44 sorted = false
45 temp = d[i+1]
46 d[i+1] = d[i]
47 d[i] = temp
48 end if
49 next i
50 until sorted
51 return

Program 97: Bubble Sort

Better Sort – Insertion Sort:

The insertion sort is another algorithm for sorting a list of items. It is
usually faster than the bubble sort, but in the worst case case could
take as long.

The insertion sort gets it's name from how it works. The sort goes
through the elements of the array (index = 1 to length -1) and inserts
the value in the correct location in the previous array elements.
Illustration 33 shows a step-by-step example.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 232

Illustration 33: Insertion Sort - Step-by-step

1 # insertionsort.kbs
2 # implementing an efficient sort
3
4 dim d(20)
5
6 # fill array with unsorted numbers
7 for i = 0 to d[?]-1
8 d[i] = rand * 1000
9 next i
10
11 print "*** Un-Sorted ***"
12 gosub displayarray

So You Want to Learn to Program?
© 2010 James M. Reneau.

2 7 1 3 5 4 6

Original Array

2

7

1 3 5 4 6

Start with second element and
insert it where it goes in sorted part
(shift if needed to make room)

unsorted

2 7

1

3 5 4 6

Shift the elements in the sorted part and
insert the next element where it goes

2 71

3

5 4 6

2 71 3

5

4 6

2 71 3 5

4

6

a

ab

c

a

a

a

b

b

b

c

2 71 3 54

6

a

b

2 71 3 54 6

Sorted Array

unsorted

unsorted

unsorted

unsorted

unsorted

Keep shifting and inserting each element
until you have gone through all of the
unsorted items in the array

Chapter 17: Stacks, Queues, Lists, and Sorting Page 233

13
14 gosub insertionsort
15
16 print "*** Sorted ***"
17 gosub displayarray
18 end
19
20 displayarray:
21 # print out the array's values
22 for i = 0 to d[?]-1
23 print d[i] + " ";
24 next i
25 print
26 return
27
28 insertionsort:
29 # loops thru the list starting at the second

element.
30 # takes current element and inserts it
31 # in the the correct sorted place in the

previously
32 # sorted elements
33
34 # moving from backward from the current location
35 # and sliding elements with a larger value

foward
36 # to make room for the current value in the

correct
37 # place (in the partially sorted array)
38
39 for i = 1 to d[?] - 1
40 currentvalue = d[i]
41 j = i - 1
42 done = false
43 do
44 if d[j] > currentvalue then
45 # shift value and stop looping if we

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 17: Stacks, Queues, Lists, and Sorting Page 234

are at begining
46 d[j+1] = d[j]
47 j = j - 1
48 if j < 0 then done = true
49 else
50 # j is the element before where we want

to insert
51 done = true
52 endif
53 until done
54 d[j+1] = currentvalue
55 next i
56 return

Program 98: Insertion Sort

Re-write Program 98 using a linked list like in Program 96.

Research other sorting algorithms and write them in BASIC-
256.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 235

Chapter 18 – Runtime Error Trapping

As you have worked through the examples and created your own
programs you have seen errors that happen while the program is
running. These errors are called “runtime errors”. BASIC-256 includes
a group of special commands that allow your program to recover from
or handle these errors.

Trapping errors, when you do not mean too, can cause problems. Error
trapping should only be used when needed and disabled when not.

Error Trap:

When error trapping is turned on, with the onerror statement, the
program will jump to a specified subroutine when an error occurs. If
we look at Program 99 we will see that the program calls the
subroutine when it tries to read the value of z (an undefined variable).
If we try to run the same program with line one commented out or
removed the program will terminate when the error happens.

1 onerror errortrap
2
3 print "z = " + z
4 print "Still running after error"
5 end
6
7 errortrap:
8 print "I trapped an error."
9 return

Program 99: Simple Runtime Error Trap

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 236

I trapped an error.
z = 0
Still running after error

Sample Output 99: Simple Runtime Error Trap

onerror label

Create an error trap that will automatically jump to the
subroutine at the specified label when an error occurs.

Finding Out Which Error:

Sometimes just knowing that an error happened is not enough. There
are functions that will return the error number (lasterror), the line
where the error happened in the program (lasterrorline), a text
message describing the error (lasterrormessage), and extra
command specific error messages (lasterrorextra).

Program 100 modifies the previous program to print details of what
error actually happened. More complex logic could be added to your
error trap, specifically to change the behavior with different errors
happen.

1 onerror errortrap
2
3 print "z = " + z
4 print "Still running after error"
5 end
6
7 errortrap:
8 print "Error Trap - Activated"

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 237

9 print " Error = " + lasterror
10 print " On Line = " + lasterrorline
11 print " Message = " + lasterrormessage
12 return

Program 100: Runtime Error Trap - With Messages

Error Trap - Activated
 Error = 12
 On Line = 3
 Message = Unknown variable
z = 0
Still running after error

Sample Output 100: Runtime Error Trap - With Messages

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 238

lasterror or lasterror()
lasterrorline or lasterrorline()
lasterrormessage or lasterrormessage()
lasterrorextra or lasterrorextra()

The four “last error” functions will return information about
the last trapped error. These values will remain unchanged
until another error is encountered.

lasterror Returns the number of the last
trapped error. If no errors have been
trapped this function will return a
zero. See Appendix J: Error Numbers
for a complete list of trappable errors.

lasterrorline Returns the line number, of the
program, where the last error was
trapped.

lasterrormessage Returns a string describing the last
error.

lasterrorextra Returns a string with additional error
information. For most errors this
function will not return any
information.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 239

Turning Off Error Trapping:

Sometimes in a program we will want to trap errors during part of the
program and not trap other errors. You will see examples of this type
of error trapping logic in subsequent chapters.

The offerror statement turns error trapping off. This causes all errors
encountered to stop the program.

1 onerror errortrap
2 print "z = " + z
3 print "Still running after first error"
4
5 offerror
6 print "z = " + z
7 print "Still running after second error"
8
9 end
10
11 errortrap:
12 print "Error Trap - Activated"
13 return

Program 101: Turning Off the Trap

Error Trap - Activated
z = 0
Still running after first error
ERROR on line 6: Unknown variable

Sample Output 101: Turning Off the Trap

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 18 – Runtime Error Trapping Page 240

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 241

Chapter 19: Database Programming

This chapter will show how BASIC-256 can connect to a simple
relational database and use it to store and retrieve useful information.

What is a Database:

A database is simply an organized collection of numbers, string, and
other types of information. The most common type of database is the
“Relational Database”. Relational Databases are made up of four
major parts: tables, rows, columns, and relationships (see Table 8).

Table A table consists of a predefined number or columns
any any number of rows with information about a
specific object or subject. Also known as a relation.

Row Also called a tuple.

Column This can also be referred to as an attribute.

Relationship A reference of the key of one table as a column of
another table. This creates a connection between
tables.

Table 8: Major Components of a Relational Database

The SQL Language:

Most relational databases, today, use a language called SQL to actually
extract and manipulate data. SQL is actually an acronym for
Structured Query Language. The original SQL language was developed
by IBM in the 1970s and has become the primary language used by
relational databases.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 242

SQL is a very powerful language and has been implemented by dozens
of software companies, over the years. Because of this complexity
there are many different dialects of SQL in use. BASIC-256 uses the
SQLite database engine. Please see the SQLite web-page at
http://www.sqlite.org for more information about the dialect of SQL
shown in these examples.

Creating and Adding Data to a Database:

The SQLite library does not require the installation of a database sever
or the setting up of a complex system. The database and all of its
parts are stored in a simple file on your computer. This file can even
be copied to another computer and used, without problem.

The first program (Program 102: Create a Database) creates a new
sample database file and tables. The tables are represented by the
Entity Relationship Diagram (ERD) as shown in Illustration 34.

Illustration 34: Entity Relationship Diagram of
Chapter Database

So You Want to Learn to Program?
© 2010 James M. Reneau.

owner

owner_id integer
ownernam e text
phonenum ber text

pet

pet_id integer
owner_id integer
petnam e text
type text

http://www.sqlite.org/

Chapter 19: Database Programming Page 243

1 # delete old database and create a database with
two tables

2 errors = 0
3 file$ = "pets.sqlite3"
4 if exists(file$) then kill(file$)
5 dbopen file$
6
7 stmt$ = "CREATE TABLE owner (owner_id INTEGER,

ownername TEXT, phonenumber TEXT, PRIMARY KEY
(owner_id));"

8 gosub execute
9
10 stmt$ = "CREATE TABLE pet (pet_id INTEGER,

owner_id INTEGER, petname TEXT, type TEXT,
PRIMARY KEY (pet_id), FOREIGN KEY (owner_id)
REFERENCES owner (owner_id));"

11 gosub execute
12
13 # wrap everything up
14 dbclose
15 print file$ + " created. " + errors + " errors."
16 end
17
18 execute:
19 print stmt$
20 onerror executeerror
21 dbexecute stmt$
22 offerror
23 return
24
25 executeerror:
26 errors = errors + 1
27 print "ERROR: " + lasterror + " " +

lasterrormessage + " " + lasterrorextra
28 return

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 244

Program 102: Create a Database

CREATE TABLE owner (owner_id INTEGER, ownername TEXT,
phonenumber TEXT, PRIMARY KEY (owner_id));
CREATE TABLE pet (pet_id INTEGER, owner_id INTEGER,
petname TEXT, type TEXT, PRIMARY KEY (pet_id),
FOREIGN KEY (owner_id) REFERENCES owner (owner_id));
pets.sqlite3 created. 0 errors.

Sample Output 102: Create a Database

So far you have seen three new database statements: dbopen – will
open a database file and create it if it does not exist, dbexecute – will
execute an SQL statement on the open database, and dbclose –
closes the open database file.

dbopen filename

Open an SQLite database file. If the database does not exist
then create a new empty database file.

dbexecute sqlstatement

Perform the SQL statement on the currently open SQLite
database file. No value will be returned but a trappable
runtime error will occur if there were any problems
executing the statement on the database.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 245

dbclose

Close the currently open SQLite database file. This
statement insures that all data is written out to the database
file.

These same three statements can also be used to execute other SQL
statements. The INSERT INTO statement (Program 103) adds new
rows of data to the tables and the UPDATE statement (Program 104)
will change an existing row's information.

1 # add rows to the database
2
3 file$ = "pets.sqlite3"
4 dbopen file$
5
6 owner_id = 0
7 pet_id = 0
8
9 ownername$ = "Jim": phonenumber$ = "555-3434"
10 gosub addowner
11 petname$ = "Spot": type$ = "Cat"
12 gosub addpet
13 petname$ = "Fred": type$ = "Cat"
14 gosub addpet
15 petname$ = "Elvis": type$ = "Cat"
16 gosub addpet
17
18 ownername$ = "Sue": phonenumber$ = "555-8764"
19 gosub addowner
20 petname$ = "Alfred": type$ = "Cat"
21 gosub addpet
22 petname$ = "Fido": type$ = "Dog"
23 gosub addpet
24

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 246

25 ownername$ = "Amy": phonenumber$ = "555-9932"
26 gosub addowner
27 petname$ = "Bones": type$ = "Dog"
28 gosub addpet
29
30 ownername$ = "Dee": phonenumber$ = "555-4433"
31 gosub addowner
32 petname$ = "Sam": type$ = "Goat"
33 gosub addpet
34
35 # wrap everything up
36 dbclose
37 end
38
39 addowner:
40 owner_id = owner_id + 1
41 stmt$ = "INSERT INTO owner (owner_id, ownername,

phonenumber) VALUES (" + owner_id + "," +
chr(34) + ownername$ + chr(34) + "," + chr(34) +
phonenumber$ + chr(34) + ");"

42 print stmt$
43 onerror adderror
44 dbexecute stmt$
45 offerror
46 return
47
48 addpet:
49 pet_id = pet_id + 1
50 stmt$ = "INSERT INTO pet (pet_id, owner_id,

petname, type) VALUES (" + pet_id + "," +
owner_id + "," + chr(34) + petname$ + chr(34) +
"," + chr(34) + type$ + chr(34) + ");"

51 print stmt$
52 onerror adderror
53 dbexecute stmt$
54 offerror
55 return

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 247

56
57 adderror:
58 print "ERROR: " + lasterror + " " +

lasterrormessage + " " + lasterrorextra
59 return

Program 103: Insert Rows into Database

INSERT INTO owner (owner_id, ownername, phonenumber)
VALUES (1,"Jim","555-3434");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (1,1,"Spot","Cat");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (2,1,"Fred","Cat");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (3,1,"Elvis","Cat");
INSERT INTO owner (owner_id, ownername, phonenumber)
VALUES (2,"Sue","555-8764");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (4,2,"Alfred","Cat");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (5,2,"Fido","Dog");
INSERT INTO owner (owner_id, ownername, phonenumber)
VALUES (3,"Amy","555-9932");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (6,3,"Bones","Dog");
INSERT INTO owner (owner_id, ownername, phonenumber)
VALUES (4,"Dee","555-4433");
INSERT INTO pet (pet_id, owner_id, petname, type)
VALUES (7,4,"Sam","Goat");

Sample Output 103: Insert Rows into Database

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 248

1 # update a database row
2
3 dbopen "pets.sqlite3"
4
5 # create and populate
6 s$ = "UPDATE owner SET phonenumber = " +

chr(34) + "555-5555" + chr(34) + " where
owner_id = 1;"

7 print s$
8 dbexecute s$
9 dbclose

Program 104: Update Row in a Database

UPDATE owner SET phonenumber = "555-5555" where
owner_id = 1;

Sample Output 104: Update Row in a Database

Retrieving Information from a Database:

So far we have seen how to open, close, and execute a SQL statement
that does not return any values. A database would be pretty useless if
we could not get information out of it.

The SELECT statement, in the SQL language, allows us to retrieve the
desired data. After a SELECT is executed a “record set” is created that
contains the rows and columns of data that was extracted from the
database. Program 105 shows three different SELECT statements and
how the data is read into your BASIC-256 program.

Get data from the pets database
1

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 249

2 dbopen "pets.sqlite3"
3
4 # show owners and their phone numbers
5 print "Owners and Phone Numbers"
6 dbopenset "SELECT ownername, phonenumber FROM

owner ORDER BY ownername;"
7 while dbrow()
8 print dbstring(0) + " " + dbstring(1)
9 end while
10 dbcloseset
11
12 print
13
14 # show owners and their pets
15 print "Owners with Pets"
16 dbopenset "SELECT owner.ownername, pet.pet_id,

pet.petname, pet.type FROM owner JOIN pet ON
pet.owner_id = owner.owner_id ORDER BY
ownername, petname;"

17 while dbrow()
18 print dbstring(0) + " " + dbint(1) + " " +

dbstring(2) + " " + dbstring(3)
19 end while
20 dbcloseset
21
22 print
23
24 # show average number of pets
25 print "Average Number of Pets"
26 dbopenset "SELECT AVG(c) FROM (SELECT COUNT(*)

AS c FROM owner JOIN pet ON pet.owner_id =
owner.owner_id GROUP BY owner.owner_id) AS
numpets;"

27 while dbrow()
28 print dbfloat(0)
29 end while
30 dbcloseset

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 250

31
32 # wrap everything up
33 dbclose

Program 105: Selecting Sets of Data from a Database

Owners and Phone Numbers
Amy 555-9932
Dee 555-4433
Jim 555-5555
Sue 555-8764

Owners with Pets
Amy 6 Bones Dog
Dee 7 Sam Goat
Jim 3 Elvis Cat
Jim 2 Fred Cat
Jim 1 Spot Cat
Sue 4 Alfred Cat
Sue 5 Fido Dog

Average Number of Pets
1.75

Sample Output 105: Selecting Sets of Data from a Database

dbopenset sqlstatement

Execute a SELECT statement on the database and create a
“record set” to allow the program to read in the result. The
“record set” may contain 0 or more rows as extracted by the
SELECT.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 251

dbrow or dbrow ()

Function to advance the result of the last dbopenset to the
next row. Returns false if we are at the end of the selected
data.

You need to advance to the first row, using dbrow, after a
dbopenset statement before you can read any data.

dbint (column)
dbfloat (column)
dbstring (column)

These functions will return data from the current row of the
record set. You must know the zero based numeric column
number of the desired data.

dbint Return the cell data as an integer.

dbfloat Return the cell data as a floating point
number.

dbstring Return the cell data as a string.

dbcloseset

Close and discard the results of the last dbopenset
statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 19: Database Programming Page 252

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 253

Chapter 20: Connecting with a Network

This chapter discusses how to use the BASIC-256 networking
statements. Networking in BASIC-256 will allow for a simple “socket”
connection using TCP (Transmission Control Protocol). This chapter is
not meant to be a full introduction to TCP/IP socket programming.

Socket Connection:

TCP stream sockets create a connection between two computers or
programs. Packets of information may be sent and received in a bi-
directional (or two way) manner over the connection.

To start a connection we need one computer or program to act as a
server (to wait for the incoming telephone call) and the other to be a
client (to make the telephone call). Illustration 35 shows graphically
how a stream connection is made.

Illustration 35: Socket Communication

So You Want to Learn to Program?
© 2010 James M. Reneau.

ClientServer

1. Server listens for client to connect
2. Client connects to port
3. Bi-directional (2-way) communication
 between client and server.

2.

3.

1.

Chapter 20: Connecting with a Network Page 254

Just like with a telephone call, the person making the call (client) needs
to know the phone number of the person they are calling (server). We
call that number an IP address. BASIC-256 uses IP version 4 addresses
that are usually expressed as four numbers separated by periods
(999.999.999.999).

In addition to having the IP address for the server, the client and server
must also talk to each-other over a port. You can think of the port as a
telephone extension in a large company. A person is assigned an
extension (port) to answer (server) and if you want to talk to that
person you (client) call that extension.

The port number may be between 0 and 65535 but various Internet
and other applications have been reserved ports in the range of 0-
1023. It is recommended that you avoid using these ports.

A Simple Server and Client:

1 # simple_server.kbs
2 print "listening to port 9999 on " +

netaddress()
3 NetListen 9999
4 NetWrite "The simple server sent this message."
5 NetClose

Program 106: Simple Network Server

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 255

1 # simple _client.kbs
2 input "What is the address of the

simple_server?", addr$
3 if addr$ = "" then addr$ = "127.0.0.1"
4 #
5 NetConnect addr$, 9999
6 print NetRead
7 NetClose

Program 107: Simple Network Client

listening to port 9999 on xx.xx.xx.xx

Sample Output 106: Simple Network Server

What is the address of the simple_server?
The simple server sent this message.

Sample Output 107: Simple Network Client

netaddress
netaddress ()

Function that returns a string containing the numeric IPv4
network address for this machine.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 256

netlisten portnumber
netlisten (portnumbrer)
netlisten socketnumber, portnumber
netlisten (socketnumber, portnumber)

Open up a network connection (server) on a specific port
address and wait for another program to connect. If
socketnumber is not specified socket number zero (0) will be
used.

netclose
netclose ()
netclose socketnumber
netclose (socketnumber)

Close the specified network connection (socket). If
socketnumber is not specified socket number zero (0) will be
closed.

netwrite string
netwrite (string)
netwrite socketnumber, string
netwrite (socketnumber, string)

Send a string to the specified open network connection. If
socketnumber is not specified socket number zero (0) will be
written to.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 257

netconnect servername, portnumber
netconnect (servername, portnumber)
netconnect socketnumber, servername,

portnumber
netconnect (socketnumber, servername,

portnumber)

Open a network connection (client) to a server. The IP
address or host name of a server are specified in the
servername argument, and the specific network port
number. If socketnumber is not specified socket number
zero (0) will be used for the connection.

netread
netread ()
netread (socketnumber)

Read data from the specified network connection and return
it as a string. This function is blocking (it will wait until data
is received). If socketnumber is not specified socket number
zero (0) will be read from.

Network Chat:

This example adds one new function (netdata) to the networking
statements we have already introduced. Use of this new function will
allow our network clients to process other events, like keystrokes, and
then read network data only when there is data to be read.

The network chat program (Program 108) combines the client and
server program into one. If you start the application and it is unable to
connect to a server the error is trapped and the program then

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 258

becomes a server. This is one of many possible methods to allow a
single program to fill both roles.

1 # chat.kbs
2 # uses port 9999 for server
3
4 input "Chat to address (return for server or

local host)?", addr$
5 if addr$ = "" then addr$ = "127.0.0.1"
6 #
7 # try to connect to server - if there is not one

become one
8 OnError startserver
9 NetConnect addr$, 9999
10 OffError
11 print "connected to server"
12
13 chatloop:
14 while true
15 # get key pressed and send it
16 k = key
17 if k <> 0 then
18 gosub show
19 netwrite string(k)
20 end if
21 # get key from network and show it
22 if NetData() then
23 k = int(NetRead())
24 gosub show
25 end if
26 pause .01
27 end while
28 end
29
30 show:
31 if k=16777220 then

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 259

32 print
33 else
34 print chr(k);
35 end if
36 return
37
38 startserver:
39 OffError
40 print "starting server - waiting for chat

client"
41 NetListen 9999
42 print "client connected"
43 goto chatloop
44 return

Program 108: Network Chat

The following is observed when the user on the client types the
message “HI SERVER” and then the user on the server types “HI
CLIENT”.

Chat to address (return for server or local host)?
starting server - waiting for chat client
client connected
HI SERVER
HI CLIENT

Sample Output 108.1: Network Chat (Server)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 260

Chat to address (return for server or local host)?
connected to server
HI SERVER
HI CLIENT

Sample Output 108.2: Network Chat (Client)

netdata or netdata()

Returns true if there is network data waiting to be read. This
allows for the program to continue operations without
waiting for a network packet to arrive.

The big program this chapter creates a two player
networked tank battle game. Each player is the white tank
on their screen and the other player is the black tank. Use
the arrow keys to rotate and move. Shoot with the space
bar.

1 # battle.kbs
2 # uses port 9998 for server
3
4 kspace = 32
5 kleft = 16777234
6 kright = 16777236
7 kup = 16777235
8 kdown = 16777237
9 dr = pi / 16 # direction change
10 dxy = 2.5 # move speed
11 scale = 20 # tank size
12 shotscale = 4 # shot size
13 shotdxy = 5 # shot move speed
14 port = 9998 # port to communicate on

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 261

15
16 dim tank(30)
17 tank = {-1,-.66, -.66,-.66, -.66,-.33, -.33,

-.33, 0,-1, .33,-.33, .66,-.33, .66,-.66,
1,-.66, 1,1, .66,1, .66,.66, -.66,.66, -.66,1,
-1,1}

18 dim shot(14)
19 shot = {0,-1, .5,-.5, .25,0, .5,.75, -.25,.75,

-.25,0, -.5,-.5}
20
21 print "Tank Battle - You are the white tank."
22 print "Your mission is to shoot and kill the"
23 print "black one. Use arrows to move and"
24 print "space to shoot."
25 print
26 input "Address (return for server or local

host)?", addr$
27 if addr$ = "" then addr$ = "127.0.0.1"
28
29 # try to connect to server - if there is not one

become one
30 OnError startserver
31 NetConnect addr$, port
32 OffError
33 print "connected to server"
34
35 playgame:
36
37 myx = 100
38 myy = 100
39 myr = 0
40 mypx = 0 # projectile position direction and

remaining length (no shot when mypl=0)
41 mypy = 0
42 mypr = 0
43 mypl = 0
44 yourx = 200

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 262

45 youry = 200
46 yourr = pi
47 yourpx = 0 # projectile position direction

and remaining length
48 yourpy = 0
49 yourpr = 0
50 yourpl = 0
51 gosub writeposition
52
53 fastgraphics
54 while true
55 # get key pressed and move tank on the screen
56 k = key
57 if k <> 0 then
58 if k = kup then
59 myx = myx + sin(myr) * dxy
60 myy = myy - cos(myr) * dxy
61 end if
62 if k = kdown then
63 myx = myx - sin(myr) * dxy
64 myy = myy + cos(myr) * dxy
65 end if
66 if k = kspace then
67 mypr = myr
68 mypx = myx + sin(mypr) * scale
69 mypy = myy - cos(mypr) * scale
70 mypl = 100
71 end if
72 if myx < scale then myx = graphwidth -

scale
73 if myx > graphwidth-scale then myx = scale
74 if myy < scale then myy = graphheight -

scale
75 if myy > graphheight-scale then myy =

scale
76 if k = kleft then myr = myr - dr
77 if k = kright then myr = myr + dr

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 263

78 gosub writeposition
79 end if
80 # move my projectile (if there is one)
81 if mypl > 0 then
82 mypx = mypx + sin(mypr) * shotdxy
83 mypy = mypy - cos(mypr) * shotdxy
84 if mypx < shotscale then mypx = graphwidth

- shotscale
85 if mypx > graphwidth-shotscale then mypx =

shotscale
86 if mypy < shotscale then mypy =

graphheight - shotscale
87 if mypy > graphheight-shotscale then mypy

= shotscale
88 if (mypx-yourx)^2 + (mypy-youry)^2 <

scale^2 then
89 NetWrite "!"
90 print "You killed your opponent. Game

over."
91 end
92 end if
93 mypl = mypl - 1
94 gosub writeposition
95 end if
96 # get position from network
97 gosub getposition
98 #
99 gosub draw
100 #
101 pause .1
102 end while
103
104 writeposition: ###
105 # 10 char for x, 10 char for y, 10 char for r

(rotation)
106 position$ = left(myx + "

",10)+left(myy + " ",10)+left(myr + "

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 264

",10)+left(mypx + " ",10)+left(mypy + "
",10)+left(mypr + " ",10)+left(mypl + "
",10)

107 NetWrite position$
108 return
109
110 getposition: ###
111 # get position from network and set variables

for the opponent
112 while NetData()
113 position$ = NetRead()
114 if position$ = "!" then
115 print "You Died. - Game Over"
116 end
117 end if
118 yourx = 300 - float(mid(position$,1,10))
119 youry = 300 - float(mid(position$,11,10))
120 yourr = pi + float(mid(position$,21,10))
121 yourpx = 300 - float(mid(position$,31,10))
122 yourpy = 300 - float(mid(position$,41,10))
123 yourpr = pi + float(mid(position$,51,10))
124 yourpl = pi + float(mid(position$,61,10))
125 end while
126 return
127
128 draw: ###
129 clg
130 color green
131 rect 0,0,graphwidth,graphheight
132 color white
133 stamp myx, myy, scale, myr, tank
134 if mypl > 0 then
135 stamp mypx, mypy, shotscale, mypr, shot
136 end if
137 color black
138 stamp yourx, youry, scale, yourr, tank
139 if yourpl > 0 then

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 265

140 color red
141 stamp yourpx, yourpy, shotscale, yourpr, shot
142 end if
143 refresh
144 return
145
146 startserver:
147 OffError
148 print "starting server - waiting for chat

client"
149 NetListen port
150 print "client connected"
151 goto playgame
152 return

Program 109: Network Tank Battle

Sample Output 109: Network Tank
Battle

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 266

So You Want to Learn to Program?
© 2010 James M. Reneau.

Chapter 20: Connecting with a Network Page 267

Appendix A: Loading BASIC-256 on your
PC or USB Pen Drive

This chapter will walk you step by step through downloading and
installing BASIC-256 on your Microsoft Windows PC. The instructions
are written for Windows XP with Firefox 3.x as your Web browser. Your
specific configuration and installation may be different but the general
steps should be similar.

1 – Download:

Connect to the Internet and navigate to the Web site
http://www.basic256.org and follow the download link. Once you are at
the Sourceforge project page click on the green “Download
Now!”button (Illustration 36) to start the download process.

So You Want to Learn to Program?
© 2010 James M. Reneau.

http://www.basic256.org/

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 268

Illustration 36: BASIC-256 on Sourceforge

The download process may ask you what you want to do with the file.
Click the “Save File” button (Illustration 37).

Illustration 37: Saving Install File

Firefox should display the “Downloads” window and actually download

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 269

the BASIC-256 installer. When it is finished it should look like
Illustration 38. Do not close this window quite yet, you will need it to
start the Installation.

Illustration 38: File Downloaded

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 270

2 – Installing:

Once the file has finished downloading (Illustration 38) use your mouse
and click on the file from the download list. You will then see one or
two dialogs asking if you really want to execute this file (Illustration 39)
(Illustration 40). You need to click the “OK” or “Run” buttons on these
dialogs.

Illustration 39: Open File Warning

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 271

Illustration 40: Open File Security Warning

After the security warnings are cleared you will see the actual BASIC-
256 Installer application. Click the “Next>” button on the first screen
(Illustration 41).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 272

Illustration 41: Installer - Welcome Screen

Read and agree to the GNU GPL software license and click on “I Agree”
(Illustration 42). The GNU GPL license is one of the most commonly
used “Open Source” and”Free” license to software. You have the right
to use, give away, and modify the programs released under the GPL.
This license only relates to the BASIC-256 software and not the
contents of this book.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 273

Illustration 42: Installer - GPL License Screen

The next Installer screen asks you what you want to install (Illustration
43). If you are installing BASIC-256 to a USB or other type of
removable drive then it is suggested that you un-check the “Start
Menu Shortcuts”. For most users who are installing to a hard drive,
should do a complete install. Click “Next>”.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 274

Illustration 43: Installer - What to Install

Illustration 44 shows the last screen before the install begins. This
screen asks you what folder to install the BASIC-256 executable files
into. If you are installing to your hard drive then you should accept the
default path.

Illustration 44: Installer - Where to Install

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 275

The installation is complete when you see this screen (Illustration 45).
Click “Close”.

Illustration 45: Installer - Complete

3 – Starting BASIC-256

The installation is complete. You may now click on the Windows
“Start” button and then “All Programs >” (Illustration 46).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix A: Loading BASIC-256 on your PC or USB Pen Drive Page 276

Illustration 46: XP Start
Button

You will then see a menu for BASIC-256. You may open the program
by clicking on it, uninstall it, or view the documentation from this menu
(Illustration 47).

Illustration 47: BASIC-256 Menu from All Programs

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 277

Appendix B: Language Reference -
Statements

Chapter number where this statement is introduced is shown in parentheses.

circle – Draw a Circle on the Graphics Output Area
(2)

circle x, y, radius

The circle command draws a filled circle on the graphics output area.
The center of the circle is defined by the x and y parameters and the
size is defined as radius.

Example:

clg
color 255,128,128
circle 150,150,150
color red
circle 150,150,100

changedir – Change Your Current Working
Directory (16)

changedir path

The changedir command allows you to change the current working
directory for you application. When you specify a file without a full
path (in imgload, open, spriteload, or other statement that requests
a file name) the application uses this directory. You can check your

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 278

currently set path using the currentdir function.

clg – Clear Graphics Output Area (2)

clg

This command clears the graphics output area. The graphics output
area is not cleared automatically when an program is run. This will
sometimes leave undesired graphics visible. If you are using graphics
it is advised that you always clear the output window, first.

clickclear – Clear the Last Mouse Click (10)

clickclear

When the mouse is being read in click mode the x position, y position,
and button click information are stored when the mouse button is
clicked. These values can be retrieved with the clickx(), clicky(), and
clickb() functions. The stored values can be reset to zero (0) using
clickclear.

close – Close the Currently Open File (16)

close
close()
close filenumber
close (filenumber)

Closes open file. This will flush any pending disk output. If file number
parameter is not specified then file number zero (0) will be used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 279

cls – Clear Text Output Window (1)

cls

This command clears the Text Output window. The Text Output
window is automatically cleared when a program is run.

color or colour– Set Color for Drawing (2)

color colorname
color rgbvalue
color red, green, blue

Sets the foreground color for all graphical commands. The color may
be specified by the color name (see Appendix E), an integer
representing the RGB value, or by three numbers representing the RGB
value as separate component colors.

A special color named CLEAR or represented by -1 tells the drawing
commands to erase the pixels from the drawing and make them
transparent.

Example:
clg
color black
rect 100,100,100,100
color 255,128,128
circle 150,150,75

dbclose (19)

dbclose

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 280

Close the currently open SQLite database file.

dbcloseset (19)

dbcloseset

Close the currently open record set opened by DBOpenSet.

dbexecute (19)

dbexecute statement
dbexecute (statement)

Execute an SQL statement on the open SQLite database file. This
statement does not create a record set but will return an error if the
statement did not execute.

dbopen (19)

dbopen filename
dbopen (filename)

Open an SQLite database file. If the file does not exist then create it.

dbopenset (19)

dbopenset statement
dbopenset (statement)

Perform an SQL statement and create a record set so that the program
may loop through and use the results.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 281

decimal ()

decimal n
decimal (n)

Description...

dim – Dimension a New Array (13)

dim variable(items)
dim variable$(items)
dim variable(rows, columns)
dim variable$(rows, columns)

The dim statement creates an array in the computer's memory the
size that was specified in the parenthesis. Sizes (items, rows, and
columns) must be integer values greater than or equal to one (1). The
dim statement will initialize the elements in the new array with either
zero (0) if numeric or the empty string (“”), depending on the type of
variable.

do / until – Do / Until Loop (7)

do
statement(s)

until condition

Repeat the statements in the block over and over again. Stop
repeating when the condition is true. The statements will be executed
one or more times.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 282

end – Stop Running the Program (9)

end

Terminates the program (stop).

fastgraphics – Turn Fast Graphics Mode On (8)

fastgraphics

The fastgraphics statement will switch BASIC-256 into fast graphics
mode. In this mode the graphics output area is only refreshed (drawn),
when the program requests. This speeds up graphically intense
programs. The refresh statement signals that draw process. Once
fast graphics mode is entered in a program you may not return to the
default slow graphics.

font – Set Font, Size, and Weight (8)

font fontname, point, weight

The font command sets the font that will be used by the next text
command. You must specify the name of the font or font family, the
point size, and the weight.

Each computer may have several different fonts available but
"Helvetica", "Times", "Courier", "System", "Symbol" should be available
on most computers. The point size represents how tall the letters will
be drawn. Weight is used to specify how dark the letters will be drawn
(25-light, 50-normal, 63-demi bold, 75-bold, 100-black).

Example:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 283

clg
color black
n = 5
dim fonts$(n)
fonts$ = {"Helvetica", "Times", "Courier",
"System", "Symbol"}
for t = 0 to n-1
 font fonts$[t], 32, 50
 text 10, t*50, fonts$[t]
next t

for/next – Loop and Count (7)

for variable = expr1 to expr2 [step expr3]
statement(s)

next variable

Execute a block of code a specified number of times. The variable will
begin with the value of expr1 and be incremented and the looping
will continue until the variable is greater than expr2. If the step
clause is included in the statement the increment will be expr3 and
not the default value of one (1).

goto – Jump to a Label (9)

goto label

The goto statement causes the execution to jump to the statement
directly following the label.

gosub/return – Jump to a Subroutine and Return (9)

gosub label

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 284

return

The gosub statement causes the execution to jump to the subroutine
defined by the label. Execute the return statement within a
subroutine to send control back to where it was called from.

graphsize – Set Graphic Display Size (8)

graphsize width, height

Set the graphics output area to the specified height and width.

if then – Test if Something is True - Single Line(6)

if condition then statement

If the condition evaluates to true then execute the statement following
the then clause.

if then / end if – Test if Something is True –
Multiple Line (6)

if condition then
statement(s) to execute when true

end if

The if and end if statements allow you to create a block of
programming code to execute when a condition is true. It is often
customary to indent the statements within the if/end if statements so
they are not confusing to read.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 285

if then / else / end if – Test if Something is True –
Multiple Line with Else (6)

if condition then
statement(s) to execute when true

else
statement(s) to execute when false

end if

The if, else, and end if statements allow you to define two blocks of
programming code. The first block, after the then clause, executes if
the condition is true and the second block, after the else clause, will
execute when the condition is false.

imgload – Load an image from a file and display
(12)

imgload x, y, filename
imgload x, y, scale, filename
imgload x, y, scale, rotation, filename

Read in the picture found in the file and display it on the graphics
output area. The values of x and y represent the location to place the
CENTER of the image.

Images may be loaded from many different file formats, including:
BMP, PNG, GIF, JPG, and JPEG.

Optionally scale (re-size) it by the decimal scale where 1 is full size.
Also you may also rotate the image clockwise around it's center by
specifying how far to rotate as an angle expressed in radians (0 to 2π).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 286

input – Get a String Value from the User (7)

input “prompt”, stringvariable$
input “prompt”, numericvariable
input stringvariable$
input numericvariable

The input statement will retrieve a string or a number that the user
types into the text output area of the screen. The result will be stored
in a variable that may be used later in the program.

A prompt message, if specified, will display on the text output area and
the cursor will directly follow the prompt.

If a numeric result is desired (numeric variable specified in the
statement) and the user types a string that can not be converted to a
number the input statement will set the variable to zero (0).

kill – Delete a File ()

kill filename
kill (filename)

Delete a file from the file system

line – Draw a Line on the Graphics Output Area (2)

line start_x, start_y, finish_x, finish_y

Draw a line one pixel wide from the starting point to the ending point,
using the current color.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 287

netclose (20)

netclose
netclose ()
netclose socket
netclose (socket)

Close the specified network connection (socket). If socket number is
not number zero (0) will be used.

netconnect (20)

netconnect server, port
netconnect (server, port)
netconnect socket, server, port
netconnect (socket, server, port)

Open a network connection (client) to a server. The IP address or host
name of a server are specified in the server_name argument, and the
specific network port number in the port_number argument. If socket
number is not specified zero (0) will be used.

netlisten (20)

netlisten port
netlisten (port)
netlisten socket, port
netlisten (socket, port)

Open up a network connection (server) on a specific port address and
wait for another program to connect. If socket number is not specified
zero (0) will be used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 288

netwrite (20)

netwrite string
netwrite (string)
netwrite socket, string
netwrite (socket, string)

Send a string to the specified open network connection. If socket
number is not specified zero (0) will be used.

offerror (18)

offerror

Turns off error trapping and restores the default error behavior.

onerror (18)

onerror label

Causes the subroutine at label to be executed when an runtime error
occurs. Program control may be resumed at the next statement with a
return statement in the subroutine.

open – Open a file for Reading and Writing (16)

open filename
open filenumber, filename

Open the file specified for reading and writing. If the file does not exist

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 289

it will be created so that information may be added (see write and
writeline). Be sure to execute the close statement when the program
is finished with the file.

BASIC-256 may have up to eight (8) files opened at any one time. The
files will be numbered from zero(0) to seven(7). If a file number is not
specified then file number zero (0) will be used.

pause – Pause the Program (7)

pause seconds

The pause statement tells BASIC-256 to stop executing the current
program for a specified number of seconds. The number of seconds
may be a decimal number if a fractional second pause is required.

plot – Put a Point on the Graphics Output Area (2)

plot x, y

Changes a single pixel to the current color.

poly – Draw a Polygon on the Graphics Output Area
(8)

poly {x1, y1, x2, y2 ...}
poly numeric_array

Draw a polygon. The array or list should contain an even number of
elements so that the each vertex of the polygon is represented by first
two values.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 290

print – Display a String on the Text Output Window
(1)

print expression
print expression;

The print statement is used to display text and numbers on the text
output area of the BASIC-256 window. Print normally goes down to the
next line but you may output several things on the same line by using
a ; (semicolon) at the end of the expression.

putslice – Display a Captured Part of the Graphics
Output

putslice x, y, slice
putslice x, y, slice, rgbcolor

This statement will draw the captured slice (see the getslice function)
back onto the graphics output area. If an RGB color is specified
then the slice will be drawn with pixels of that color being omitted
(transparent).

rect – Draw a Rectangle on the Graphics Output
Area (2)

rect x, y, width, height

The rect command draws a filled rectangle on the graphics output
area. The top left corner will be placed at the point (x, y).

Example:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 291

clg
color darkblue
rect 75,75,100,100
color blue
rect 100,100,100,100

redim – Re-Dimension an Array (12)

redim variable(items)
redim variable$(items)
redim variable(rows, columns)
redim variable$(rows, columns)

The redim statement re-sizes an array in the computer's memory.
Data previously stored in the array will be kept, if it fits.

When resizing two-dimensional arrays the values are copied in a linear
manner. Data may be shifted in an unwanted manner if you are
changing the number of columns.

refresh – Update Graphics Output Area (8)

refresh

In fast graphics mode (see fastgraphics) the graphics output area is
only refreshed, drawn, when the program requests. This speeds up
graphically intense programs. The refresh statement signals that draw
process.

rem – Remark or Comment (2)

rem comment text

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 292

comment text

Insert remark, also called a comment, into a program. Any text, on a
line, following the rem or # will be ignored by BASIC-256. Remarks
are used by programmers to place information about what the
program does, who wrote or changed it, and how it works.

reset – Clear an Open File (16)

reset
reset()
reset filenumber

Clear any data from an open file and move the file pointer to the
beginning.
If file number is not specified then file number zero (0) will be used.

say – Use Text-To-Speech to Speak (1)

say expression

The say statement is used to make BASIC-256 read an expression
aloud,
to the computer's speakers.

seek – Move the File I/O Pointer (16)

seek expression
seek (expression)
seek filenumber, expression
seek (filenumber, expression)

Move the file pointer for the next read or write operation to a specific

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 293

location in the file. To move the current pointer to the beginning of the
file use the value zero (0). To seek to the end of a file use the size()
function as the argument to the seek statement.

If file number parameter is not specified then file number zero (0) will
be used.

spritedim – Initialize Sprites for Drawing (12)

spritedim numberofsprites

The spritedim statement initializes, or allocates in memory, places to
store the specified number of sprites. Each sprite will need to be
loaded (spriteload) or created (spriteslice) before it may be
displayed. You may allocate as many sprites as your program may
require but your program may be slow if you create many sprites.

Sprites are drawn on the graphics output area in order by their
assigned sprite number. A sprite will be drawn under any sprite with a
higher number and over all sprites with a lower number.

Sprites are numbered from zero (0) to one less than the number
specified in this command (numberofsprites -1).

spritehide – Hide a Sprite (12)

spritehide spritenumber

This statement will cause the specified sprite to not be drawn on the
screen. It will still exist and may be shown using the spriteshow
statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 294

spriteload – Load an Image File Into a Sprite (12)

spriteload spritenumber, filename

This statement reads an image file (GIF, BMP, PNG, JPG, or JPEG) from
the specified path and creates a sprite. The sprite muse be allocated
using the spritedim statement before you may load it.

By default the sprite will be placed with its center at 0,0 and it will be
hidden. You should move the sprite to the desired position on the
screen (spritemove or spriteplace) and then show it (spriteshow).

spritemove – Move a Sprite from Its Current
Location (12)

spritemove spritenumber, dx, dy

Move the specified sprite x pixels to the right and y pixels down.
Negative numbers can also be specified to move the sprite left and up.
A sprite's center will not move beyond the edge of the current graphics
output window.

You may use the spritex and spritey functions to determine the
current location of the sprite.

You can move a hidden sprite but it will not be displayed until you
show the sprite using the showsprite statement.

spriteplace – Place a Sprite at a Specific Location
(12)

spriteplace spritenumber, x, y

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 295

The spriteplace statement allows you to place a sprite's center at a
specific location on the graphics output area.

spriteshow – Show a Sprite (12)

spriteshow spritenumber

The spriteshow statement causes a loaded, created, or hidden sprite
to be displayed on the graphics output area.

spriteslice – Capture a Sprite (12)

spriteslice spritenumber, x, y, width, height

This statement will allow you to create a sprite by copying it from the
graphics output area. The arguments x, y, width, and height specify a
rectangular area to capture and use for the sprite. Pixels that have not
been drawn since the last cls statement or that were drawn using the
color clear will be transparent when the sprite is drawn.

By default the sprite will be placed with its center at 0,0 and it will be
hidden. You should move the sprite to the desired position on the
screen (spritemove or spriteplace) and then show it (spriteshow).

sound – Play a beep on the PC Speaker (3)

sound frequency, duration
sound {frequency1, duration1, frequency2, duration2
...}
sound numeric_array

The first form of the sound statement takes two arguments; (1) the

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 296

frequency of the sound in Hz (cycles per second) and (2) the length of
the tone in milliseconds (ms). The second uses curly braces and can
specify several tones and durations in a list. The third form uses an
array containing frequencies and durations.

stamp – Put a Polygon Where You Want It (8)

stamp x, y, {x1, y1, x2, y2 ...}
stamp x, y, numeric_array
stamp x, y, scale, {x1, y1, x2, y2 ...}
stamp x, y, scale, numeric_array
stamp x, y, scale, rotate, {x1, y1, x2, y2 ...}
stamp x, y, scale, rotate, numeric_array

Draw a polygon with it's origin (0,0) at the screen position (x,y).
Optionally scale (re-size) it by the decimal scale where 1 is full size.
Also you may also rotate the stamp clockwise around it's origin by
specifying how far to rotate as an angle expressed in radians (0 to 2π).

system – Execute System Command in a Shell

system expression

Open a command window and execute the operating system
command.

text – Draw text on the Graphics Output Area (8)

text x, y, output

The text command will draw characters on the graphics output area.
The x and y arguments represent the top left corner and will draw the

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 297

text with the current color and font.

Example:

clg
font “Helvetica”, 32, 50
color red
text 100, 100, “Hi Mom.”

volume – Adjust Amplitude of Sound Statement

volume expression

Adjust the height of the waveform generated by the sound statement.

wavplay – Play a WAV audio file in the background
(12)

wavplay filename

Load .wav (wave) audio file data from the file name and play. The
playback will be synchronous and the next statement in the program
will begin immediately as soon as the audio begins playing.

wavstop – Stop playing WAV audio file (12)

wavstop

If there is a currently playing audio file (see wavplay) then stop the
synchronous playback.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 298

wavwait – Wait for the WAV to finish (12)

wavwait

If there is a currently playing audio file (see wavplay) then wait for it
to finish playing.

while / end while – While Loop (7)

while condition
statement(s)

end while

Do the statements in the block over and over again while the condition
is true. The statements will be executed zero or more times.

write – Write Data to the Currently Open File (16)

write expression
write (expression)
write filenumber, expression
write (filenumber, expression)

Write the string expression to an open file. Do not add an end of line or
a delimiter.

If file number parameter is not specified then file number zero (0) will
be used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 299

writeline – Write a Line to the Currently Open File
(16)

writeline expression
writeline (expression)
writeline filenumber, expression
writeline (filenumber, expression)

Output the contents of the expression to an open file and then append
an end of line mark to the data. The file pointer will be positioned at
the end of the write so that the next write statement will directly
follow.

If file number parameter is not specified then file number zero (0) will
be used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix B: Language Reference - Statements Page 300

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 301

Appendix C: Language Reference -
Functions

Functions perform calculations, get system values, and return them to the
program.

Each function will return a value of a specific type (integer, Boolean, floating
point, or string) and potentially a specific range of values. Chapter number
where this function is introduced is shown in parentheses.

abs – Absolute Value (14)

abs(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

Return Value
Range:

0.0 to ...

This function returns the absolute value of the expression or numeric
value passed to it.

Example:

a = -3
print string(a) + “ “ + string(abs(a))

will display the following on the text output area

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 302

-3 3

acos – Return the Arc-cosine (14)

acos(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

Return Value
Range:

0 to π

The inverse cosine function acos() will return an angle measurement in
radians for the specified cosine value.

asc – Return the Unicode Value for a Character (11)

asc(expression)

Argument(s): Name: Type:

expression string

Return Value
Type:

integer

Return Value
Range:

0 to 65535

The asc() function will extract the first character of the string
expression and return the character's Unicode value.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 303

Example:

English
print asc("A")
Russian
print asc("Ы")

will display:

65
1067

asin – Return the Arc-sine (14)

asin(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

Return Value
Range:

- ½ π to ½ π

The inverse sine function asin() will return an angle measurement in
radians for the specified sine value.

atan – Return the Arc-tangent (14)

atan(expression)

Argument(s): Name: Type:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 304

expression floating point

Return Value
Type:

floating point

Return Value
Range:

- ½ π to ½ π

The inverse tangent function atan() will return an angle measurement
in radians for the specified tangent value.

ceil – Round Up (14)

ceil(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

integer

Return Value
Range:

This function returns an equal or next highest integer value. This
method will round up if necessary.

Example:

a = ceil(-3.14)
b = ceil(7)
print a
print b
print ceil(9.2)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 305

will display the following on the text output area

-3
7
10

chr – Return a Character (11)

chr(expression)

Argument(s): Name: Type:

expression integer

Return Value
Type:

string

The chr() function will return a single character string that contains the
letter or character that corresponds to the Unicode value in the
expression.

Example:

print chr(34) + "In quotes." + chr(34)

will display:

"In quotes."

clickb- Return the Mouse Last Click Button Status
(10)

clickb
clickb()

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 306

Return Value
Type:

integer

Return Value
Range:

0 to 7

Returns the state of the last mouse button or combination of buttons
that was pressed. If multiple buttons were being pressed at a single
time then the returned value will be sum of the button values that
were pressed.

Button
Value

Description

0 Returns this value when no mouse button has
been pressed, since the last clickclear statement.

1 Returns this value when the “left” mouse button
was pressed.

2 Returns this value when the “right” mouse button
was pressed.

4 Returns this value when the “center” mouse
button was pressed.

clickx- Return the Mouse Last Click X Position (10)

clickx
clickx()

Return Value
Type:

integer

Return Value
Range:

0 to graphwidth() - 1

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 307

Returns the x coordinate of the mouse pointer position on the graphics
output window when the mouse button was last clicked.

clicky- Return the Mouse Last Click Y Position (10)

clicky
clicky()

Return Value
Type:

integer

Return Value
Range:

0 to graphheight() - 1

Returns the y coordinate of the mouse pointer position on the graphics
output window when the mouse button was last clicked.

cos – Cosine (14)

cos(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

Return Value
Range:

-1.0 to 1.0

This function returns the cosine of the expression. The angle should be
represented in radians. The result is approximate and may not exactly
match expected results.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 308

Example:

a = cos(pi/3)
print a

will display the following

0.5

currentdir – Current Working Directory (16)

currentdir
currentdir()

Return Value
Type:

string

This function returns a string containing the full path of the
application's working directory.

day – Return the Current System Clock – Day (9)

day
day()

Return Value
Type:

integer

Return Value
Range:

1 to 31

This function returns the current day of the month from the current

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 309

system clock. It returns the day number from 1 to 28, 29, 30, or 31.

Example:

print day

On 8/23/2010 it will display the following

23

dbfloat – Get a Floating Point Value From a
Database Set (19)

dbfloat(column)

Argument(s): Name: Type:

column integer

Return Value
Type:

floating point

Return a floating point (decimal value) from the specified column of
the current row of the open recordset.

dbint – Get an Integer Value From a Database Set
(19)

dbint(column)

Argument(s): Name: Type:

column integer

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 310

Return Value
Type:

integer

Return an integer (whole number) from the specified column of the
current row of the open recordset.

dbrow – Advance Database Set to Next Row (19)

dbrow
dbrow()

Return Value
Type:

boolean

Function that advances the record set to the next row. Returns a true
value if there is a row or false if we are at the end of the record set.

dbstring – Get a String Value From a Database Set
(19)

dbstring(column)

Argument(s): Name: Type:

column integer

Return Value
Type:

string

Return a string from the specified column of the current row of the
open recordset.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 311

degrees – Convert a Radian Value to a Degree
Value (14)

degrees(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

The degrees() function does the quick mathematical calculation to
convert an angle in radians to an angle in degrees. The formula used is

degrees=radians/ 2×360 .

eof – Allow Program to Check for End Of File
Condition (16)

eof
eof()
eof(filenumber)

Return Value
Type:

Boolean

Return Value
Range:

true or false

Returns a Boolean true if the open file pointer is at the end of the file.
If file number parameter is not specified then file number zero (0) will
be used.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 312

exists – Check to See if a File Exists (16)

exists(filename)
exists filename

Argument(s): Name: Type:

filename string

Return Value
Type:

Boolean

Return Value
Range:

true or false

Returns a Boolean value of true if the file exists and false if it does not
exist.

Example:

if not exists(“myfile.dat”) then goto fileerror

float – Convert a String Value to A Float Value (14)

float(expression)

Argument(s): Name: Type:

expression string or integer

Return Value
Type:

floating point

Returns a floating point number from either a string or an integer
value. If the expression can not be converted to a floating point
number the function returns a zero (0).

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 313

Example:

a$ = “1.234”
b = float(a$)
print a$
print b

will display:

1.234
1.234

floor – Round Down (14)

floor(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

integer

This function returns an equal or next lowest integer value. This
method will round down if necessary.

Example:

a = floor(-3.14)
b = floor(7)
print a
print b
print floor(9.2)

will display:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 314

-4
7
9

getcolor – Return the Current Drawing Color

getcolor
getcolor()

Return Value
Type:

integer

Return Value
Range:

0 to 16777215 or -1

Returns the RGB value of the current drawing color (set by the color
statement). If the color has been set to CLEAR then this function will
return a value of -1.

getslice – Capture Part of the Graphics Output

getslice(x, y, width, height)

Argument(s): Name: Type:

x integer

y integer

width integer

height integer

Return Value
Type:

string

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 315

This function returns a string of hexadecimal digits that represent the
pixels in the rectangle specified in the parameters. The slice can then
be placed back on the screen at it's original location or a new location
with the putslice statement.

graphheight – Return the Height of the Graphic
Display (8)

graphheight
graphheight()

Return Value
Type:

integer

Return Value
Range:

0 to ...

The graphheight() function will return the height, in pixels, of the
current graphics output area.

graphwidth – Return the Width of the Graphic
Display (8)

graphwidth
graphwidth()

Return Value
Type:

integer

Return Value
Range:

0 to ...

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 316

The graphwidth() function will return the width, in pixels, of the
current graphics output area.

hour – Return the Current System Clock - Hour (9)

hour
hour()

Return Value
Type:

integer

Return Value
Range:

0 to 23

This function returns the hour part of the current system clock. It
returns the hour number from 0 to 23. Midnight is represented by 0,
AM times are represented by 0-11, Noon is represented as 12, and
Afternoon (PM) hours are 12-23. This type of hour numbering is known
as military time or 24 hour time.

Example:

print hour

will display at 3:27PM:

15

instr – Return Position of One String in Another
(15)

instr(haystack, needle)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 317

Argument(s): Name: Type:

needle string

haystack string

Return Value
Type:

integer

Return Value
Range:

0 to length(haystack)

Return the position of the string needle within the string haystack. If
the needle does not exist in the haystack then the function will return
0 (zero).

Example:

print instr(“Hello Jim, How are you?”,”Jim”)
print instr(“Hello Jim, How are you?”,”Bob”)

will display:

7
0

int – Convert Value to an Integer (14)

int(expression)

Argument(s): Name: Type:

expression floating point or string

Return Value
Type:

integer

This function will convert a decimal number or a string into an integer

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 318

value. When converting a decimal number it will truncate the decimal
part and just return the integer part.

When converting a string value the function will return the integer
value in the beginning of the string. If an integer value is not found, the
function will return 0 (zero).

Example:

print int(9)
print int(9.9999)
print int(-8.765)
print int(“ 321 555 foo”)
print int(“I have 42 bananas.”)

will display:

9
9
-8
321
0

key – Return the Currently Pressed Keyboard Key
(11)

key
key()

Return Value
Type:

integer

Return Value
Range:

0 to ...

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 319

Return the key code for the last keyboard key pressed. If no key has
been pressed since the last call to the key function a zero (0) will be
returned. Each key on the keyboard has a unique key code that
typically is the upper-case Unicode value for the letter on the key.

lasterror – Return Last Error (18)

lasterror
lasterror()

Return Value
Type:

integer

Return Value
Range:

See error code listing in Appendix J

Returns the last runtime error number.

lasterrorextra – Return Last Error Extra
Information(18)

lasterrorextra
lasterrorextra()

Return Value
Type:

string

Returns statement specific “extra” information about the last runtime
error.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 320

lasterrorline – Return Program Line of Last Error
(18)

lasterrorline
lasterrorline()

Return Value
Type:

integer

Returns the line number in the program where the runtime error
happened.

lasterrormessage – Return Last Error as String (18)

lasterrormessage
lasterrormessage()

Return Value
Type:

string

Returns a string representing the last runtime error.

left – Extract Left Sub-string (15)

left(expression, length)

Argument(s): Name: Type:

expression string

length integer

Return Value string

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 321

Type:

Returns a sub-string, the number of characters specified by length,
from the left end of the string expression. If length is greater than the
length of the string expression then the entire string is returned.

length – Length of a String (15)

length(expression)

Argument(s): Name: Type:

expression string

Return Value
Type:

integer

Returns the length of the string expression in characters.

lower – Change String to Lower Case (15)

lower(expression)

Argument(s): Name: Type:

expression string

Return Value
Type:

string

This function will return a string with the upper case characters
changed to lower case characters.

Example:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 322

print lower(“Hello.”)

will display:

hello.

mid – Extract Part of a String (14)

mid(expression, start, length)

Argument(s): Name: Type:

expression string

start integer

length integer

Return Value
Type:

string

Return a sub-string from somewhere on the middle of a string. The
start parameter specifies where the sub-string begins (1 = beginning
of string) and the length parameter specifies how many characters to
extract.

minute - Return the Current System Clock - Minute
(9)

minute
minute()

Return Value
Type:

integer

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 323

Return Value
Range:

0 to 59

This function returns the number of minutes from the current system
clock. Values range from 0 to 59.

Example:

print minute

will display at 6:47PM:

47

month - Return the Current System Clock - Month
(9)

month
month()

Return Value
Type:

integer

Return Value
Range:

0 to 11

This function returns the month number from the current system clock.
It returns the month number from 0 to 11. January is 0, February is 1,
March is 2, April is 3, May is 4, June is 5, July is 6, August is 7,
September is 8, October is 9, November is 10, and December is 11.

Example:

dim months$(12)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 324

months$ = {"Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec"}
print month + 1
print months$[month]

will display on 9/5/2008:

9
Sept

mouseb- Return the Mouse Current Button Status
(10)

mouseb
mouseb()

Return Value
Type:

integer

Return Value
Range:

0 to 7

Returns the state of the mouse button or buttons being pressed. If
multiple buttons are being pressed at a single time then the returned
value will be sum of the button values being pressed.

Button
Value

Description

0 Returns this value when no mouse button is being
pressed.

1 Returns this value when the “left” mouse button
is being pressed.

2 Returns this value when the “right” mouse button

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 325

is being pressed.

4 Returns this value when the “center” mouse
button is being pressed.

mousex- Return the Mouse Current X Position (10)

mousex
mousex()

Return Value
Type:

integer

Return Value
Range:

0 to graphwidth() - 1

Returns the x coordinate of the mouse pointer position on the graphics
output window.

mousey- Return the Mouse Current Y Position (10)

mousey
mousey()

Return Value
Type:

integer

Return Value
Range:

 0 to graphheight() -1

Returns the y coordinate of the mouse pointer position on the graphics
output window.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 326

netaddress – What Is My IP Address (20)

netaddress
netaddress()

Return Value
Type:

string

Returns a string with the current IPv4 address of this computer. If
there are multiple address assigned to this machine only the first one
will be returned.

netdata – Is There Network Data to Read (20)

netdata
netdata()
netdata(socket)

Argument(s): Name: Type:

socket integer

Return Value
Type:

boolean

Returns true of there is data to be read from the specified network
connection. If there is no data on the socket waiting then false will be
returned. If the socket number is omitted the default socket number of
zero (0) will be used.

netread – Read Data from Network(20)

netread

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 327

netread()
netread(socket)

Argument(s): Name: Type:

socket integer

Return Value
Type:

string

Reads the last packed received on the specified network connection. If
there is no data on the socket waiting to be read the program will wait
until a message is received. You may use the netdata function to
detect of there is data waiting to be read. If the socket number is
omitted the default socket number of zero (0) will be used.

pixel – Get Color Value of a Pixel

pixel(x, y)

Argument(s): Name: Type:

x integer

y integer

Return Value
Type:

integer

Return Value
Range:

0 to 16777215 or -1

Returns the RGB color of a single pixel on the graphics output window.
If the pixel has not been set since the last clg statement or was set to
transparent by drawing with the color CLEAR (-1) then this function will
return -1.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 328

radians – Convert a Degree Value to a Radian Value
(16)

radians(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

The radians function does the quick mathematical calculation to
convert an angle measured in degrees to an angular measure of
radians. The formula used is radians=degrees /360×2 .

rand – Random Number (6)

rand
rand()

Return Value
Type:

floating point

Return Value
Range:

0.0 to 0.999999

This function returns a random decimal number between 0 and 1. To
generate random integer values, convert to integer the product of rand
and the desired integer value.

Example:

print rand
display a number from 1 to 100

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 329

print int(rand*100)+1

will display something like:

0.35
22

read – Read a Token from the Currently Open File
(16)

read
read()
read(filenumber)

Return Value
Type:

string

Return Value
Range:

Read the next word or number (token) from a file. Tokens are delimited
by spaces, tab characters, or end of lines. Multiple delimiters between
tokens will be treated as one. If file number parameter is not specified
then file number zero (0) will be used.

readline – Read a Line of Text from a File (16)

readline
readline()
readline(filenumber)

Return Value
Type:

string

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 330

Return Value
Range:

Return a string containing the contents of an open file up to the end of
the current line. If we are at the end of the file [eof() = true] then this
function will return the empty string (“”). If file number parameter is
not specified then file number zero (0) will be used.

rgb – Convert Red, Green, and Blue Values to RGB
(12)

rgb(red, green, blue)

Argument(s): Name: Type:

red integer (0 to 255)

green integer (0 to 255)

blue integer (0 to 255)

Return Value
Type:

integer

Return Value
Range:

0 to 16777215

The rgb function returns a single number that represents a color
expressed by the three color component values. Remember that color
component values have the range from 0 to 255. RGB color is
calculated by the formula RGB=RED×2562GREEN×256BLUE .

right – Extract Right Sub-string (15)

right(expression, length)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 331

Syntax:

Argument(s): Name: Type:

expression string

length integer

Return Value
Type:

string

Returns a sub-string, the number of characters specified by length,
from the right end of the string expression. If length is greater than
the length of the string expression then the entire string is returned.

second - Return the Current System Clock - Second
(9)

second
second()

Return Value
Type:

integer

Return Value
Range:

0 to 59

This function returns the number of seconds from the current system
clock. Values range from 0 to 59.

Example:

print hour + “:“ + minute + “:“ + second

will display at 5:23:56 PM:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 332

17:23:56

sin – Sine (16)

sin(expression)

Argument(s): Name: Type:

expression floating point

Return Value
Type:

floating point

Return Value
Range:

-1.0 to 1.0

This function returns the sine of the expression. The angle should be
represented in radians. The result is approximate and may not exactly
match expected results.

Example:

a = sin(pi/3)
print string(a)

will display

0.87

size – Return the size of the open file (15)

size
size()
size(filenumber)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 333

Return Value
Type:

integer

Return Value
Range:

0 to ...

This function returns the length of an open file in bytes. If file number
parameter is not specified then file number zero (0) will be used.

spritecollide – Return the Collision State of Two
Sprites (12)

spritecollide(expression1, exression2)

Argument(s): Name: Type:

expression1 integer

expression2 integer

Return Value
Type:

boolean

This function returns true of the two sprites collide with or overlap each
other. The collision detection is done by

spriteh – Return the Height of Sprite (12)

spriteh(expression)

Argument(s): Name: Type:

expression integer

Return Value integer

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 334

Type:

Return Value
Range:

0 to ...

This function returns the height, in pixels, of a loaded sprite. Pass the
sprite number in expression.

Spritev – Return the Visible State of a Sprite (12)

spritev(expression)

Argument(s): Name: Type:

expression integer

Return Value
Type:

boolean

This function returns a true value if a loaded sprite is currently
displayed on the graphics output area. Pass the sprite number in
expression.

spritew – Return the Width of Sprite (12)

spritew(expression)

Argument(s): Name: Type:

expression integer

Return Value
Type:

integer

Return Value
Range:

0 to ...

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 335

This function returns the width, in pixels, of a loaded sprite. Pass the
sprite number in expression.

spritex – Return the X Position of Sprite (12)

spritex(expression)

Argument(s): Name: Type:

expression integer

Return Value
Type:

integer

Return Value
Range:

0 to ...

This function returns the position on the x axis of the center, in pixels,
of a loaded sprite. Pass the sprite number in expression.

spritey – Return the Y Position of Sprite (12)

spritey(expression)

Argument(s): Name: Type:

expression integer

Return Value
Type:

integer

Return Value
Range:

0 to ...

This function returns the position on the y axis of the center, in pixels,

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 336

of a loaded sprite. Pass the sprite number in expression.

string – Convert a Number to a String (14)

string(expression)

Argument(s): Name: Type:

expression floating point or integer

Return Value
Type:

string

Returns a string representation of an integer or floating point number.

Example:

a = 1.234
b$ = string(a)
print a
print b$

will display:

1.234
1.234

tan – Tangent (16)

tan(expression)

Argument(s): Name: Type:

expression floating point

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 337

Return Value
Type:

floating point

This function returns the tangent of the expression. The angle should
be represented in radians. The result is approximate and may not
exactly match expected results.

Example:

a = tan(pi/3)
print string(a)

will display:

1.73

upper – Change String to Upper Case (15)

upper(expression)

Argument(s): Name: Type:

expression string

Return Value
Type:

string

This function will return a string with the lower case characters
changed to upper case characters.

Example:

print upper(“Hello.”)

will display:

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix C: Language Reference - Functions Page 338

HELLO.

year - Return the Current System Clock - Year (9)

year
year()

Return Value
Type:

integer

This function returns the year part the current system clock. It returns
the full 4 digit Julian year number.

Example:

print year

will display on 1/3/2009:

2009

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix D: Language Reference – Operators and Constants Page 339

Appendix D: Language Reference –
Operators and Constants

Mathematical Operators:

Mathematical operators take one or more numeric values, do something, and
return a number.

+ - Adds Two Numbers or Concatenates Two Strings (1)

- - Subtracts Two Numbers (1)

* - Multiplies Two Numbers (1)

/ - Divides Two Numbers (1)

% - Returns the Remainder of Integer Division of Two Numbers
(13)

\ - Integer Division (14)

^ - Exponent (14)

() - Groups Operators (1)

Mathematical Constants or Values:

A mathematical constant is sort of like a variable. It returns a
predefined value so that you do not need to remember what it is.

Constant: Value:

pi 3.141593

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix D: Language Reference – Operators and Constants Page 340

Color Constants or Values:

BASIC-256 also includes a list of constants defining a simple pallet of
colors. The color constants are integers that represent the RGB value
required to draw that color on the screen.

Constant: Value: Same as:

black 0 rgb(0, 0, 0)

white 16,316,664 rgb(248, 248, 248)

red 16,711,680 rgb(255, 0, 0)

darkred 8,388,608 rgb(128, 0, 0)

green 65,280 rgb(0, 255, 0)

darkgreen 32,768 rgb(0, 128, 0)

blue 255 rgb(0, 0, 255)

darkblue 128 rgb(0, 0, 128)

cyan 65,535 rgb(0, 255, 255)

darkcyan 32,896 rgb(0, 128, 128)

purple 16,711,935 rgb(255, 0, 255)

darkpurple 8,388,736 rgb(128, 0, 128)

yellow 16,776,960 rgb(255, 255, 0)

darkyellow 8,421,376 rgb(128, 128, 0)

orange 16,737,792 rgb(255, 102, 0)

darkorange 11,154,176 rgb(170, 51, 0)

gray /grey 10,790,052 rgb(164, 164, 164)

darkgray / darkgrey 8,421,504 rgb(128, 128, 128)

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix D: Language Reference – Operators and Constants Page 341

clear -1

Logical Operators:

Logical operators return a true/false value that can then be used in the
IF statement. They are used to compare values or return the state of a
condition in your program.

= - Test if Two Values are Equal (6)

<> - Test if Two Values are Not Equal (6)

< - Test if One Value is Less Than Another Value (6)

<= - Test if One Value is Less Than or Equal Another Value (6)

> - Test if One Value is Greater Than Another Value (6)

>= - Test if One Value is Greater Than or Equal Another Value
(6)

and – Returns True if Both Values are True (6)

not – Changes True to False and False to True (6)

or – Returns True if One or Both Values are True (6)

Logical Constants or Values:

A logical constant is sort of like a variable. It returns a predefined
value so that you do not need to remember what it is. You can not
change a constant's value in your program.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix D: Language Reference – Operators and Constants Page 342

Constant: Value: Notes:

true 1 Represents a true event with the
number one.

false 0 A false condition is expressed with
the integer zero.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix E: Color Names and Numbers Page 343

Appendix E: Color Names and Numbers

Listing of standard color names used in the color statement. The
corresponding RGB values are also listed.

Color RGB Values Swatch

black 0, 0, 0

white 255, 255, 255

red 255, 0, 0

darkred 128, 0, 0

green 0, 255, 0

darkgreen 0, 128, 0

blue 0, 0, 255

darkblue 0, 0, 128

cyan 0, 255, 255

darkcyan 0, 128, 128

purple 255, 0, 255

darkpurple 128, 0, 128

yellow 255, 255, 0

darkyellow 128, 128, 0

orange 255, 102, 0

darkorange 176, 61, 0

gray /grey 160, 160, 164

darkgray / darkgrey 128, 128, 128

clear

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix E: Color Names and Numbers Page 344

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix F: Musical Tones Page 345

Appendix F: Musical Tones

This chart will help you in converting the keys on a piano into
frequencies to use in the sound statement.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Middle C - 262

F - 175

G - 196

A - 220

B – 247

F# - 185

G# - 208

A# - 233

C# - 277

D# - 311

F# - 370

D - 294

E - 330

F - 349

G - 392

A - 440
G# - 415

A# - 466

C# - 554

D# - 622

F# - 740

G# - 831

A# - 932

B - 494

C - 523

D - 587

E - 659

F - 698

G - 784

A - 880

Appendix F: Musical Tones Page 346

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix G: Key Values Page 347

Appendix G: Key Values

Key values are returned by the key() function and represent the last
keyboard key pressed since the key was last read. This table lists the
commonly used key values for the standard English keyboard. Other
key values exist.

English (EN) Keyboard Codes

Key # Key # Ke
y

Key

Space 32 A 65 L 76 W 87

0 48 B 66 M 77 X 88

1 49 C 67 N 78 Y 89

2 50 D 68 O 79 Z 90

3 51 E 69 P 80 ESC 16777216

4 52 F 70 Q 81 Backspace 16777219

5 53 G 71 R 82 Enter 16777220

6 54 H 72 S 83 Left Arrow 16777234

7 55 I 73 T 84 Up Arrow 16777235

8 56 J 74 U 85 Right
Arrow

16777236

9 57 K 75 V 86 Down
Arrow

16777237

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix G: Key Values Page 348

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix H: Unicode Character Values – Latin (English) Page 349

Appendix H: Unicode Character Values –
Latin (English)

This table shows the Unicode character values for standard Latin
(English) letters and symbols. These values correspond with the ASCII
values that have been used since the 1960's. Additional character sets
are available at http://www.unicode.org.

CHR # CHR # CHR # CHR # CHR # CHR #
NUL 0 SYN 22 , 44 B 66 X 88 n 110
SOH 1 ETB 23 - 45 C 67 Y 89 o 111
STX 2 CAN 24 . 46 D 68 Z 90 p 112
ETX 3 EM 25 / 47 E 69 [91 q 113
ET 4 SUB 26 0 48 F 70 \ 92 r 114

ENQ 5 ESC 27 1 49 G 71] 93 s 115
ACK 6 FS 28 2 50 H 72 ^ 94 t 116
BEL 7 GS 28 3 51 I 73 _ 95 u 117
BS 8 RS 30 4 52 J 74 ` 96 v 118
HT 9 US 31 5 53 K 75 a 97 w 119
LF 10 Space 32 6 54 L 76 b 98 x 120
VT 11 ! 33 7 55 M 77 c 99 y 121
FF 12 “ 34 8 56 N 78 d 100 z 122
CR 13 # 35 9 57 O 79 e 101 { 123
SO 14 $ 36 : 58 P 80 f 102 | 124
SI 15 % 37 ; 59 Q 81 g 103 } 125

DLE 16 & 38 < 60 R 82 h 104 ~ 126
DC1 17 ' 39 = 61 S 83 i 105 DEL 127
DC2 18 (40 > 62 T 84 j 106
DC3 19) 41 ? 63 U 85 k 107
DC4 20 * 42 @ 64 V 86 l 108
NAK 21 + 43 A 65 W 87 m 109

0-31 and 127 are non-printable.
Adapted from the Unicode Standard 5.2 – Available from

http://www.unicode.org/charts/PDF/U0000.pdf

So You Want to Learn to Program?
© 2010 James M. Reneau.

http://www.unicode.org/

Appendix H: Unicode Character Values – Latin (English) Page 350

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix I: Reserved Words Page 351

Appendix I: Reserved Words

These are the words that the BASIC-256 language uses to perform
various tasks. You may not use any of these words for variable names
or labels for the GOTO and GOSUB statements

#
abs
acos
and
asc
asin
atan
black
blue
ceil
changedir
chr
circle
clear
clg
clickb
clickclear
clickx
clicky
close
cls
color
colour
cos
currentdir
cyan
darkblue
darkcyan
darkgray
darkgrey
darkgeeen
darkorange
darkpurple
darkred
darkyellow
day

dbclose
dbcloseset
dbexecute
dbfloat
dbint
dbopen
dbopenset
dbrow
dbstring
decimal
degrees
dim
do
else
end
endif
endwhile
eof
exists
false
fastgraphics
float
floor
font
for
getcolor
getslice
gosub
goto
graphheight
graphsize
graphwidth
gray
grey
green
hour

if
imgload
input
instr
int
key
kill
lasterror
lasterrorextra
lasterrorline
lasterrormessage
left
length
line
log
log10
lower
mid
minute
month
mouseb
mousex
mouseynetaddress
netclose
netconnect
netdata
netlisten
netread
netwritenext
not
offerror
open
onerror
or
orange
pause

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix I: Reserved Words Page 352

pi
pixel
plot
poly
print
purple
putslice
radians
rand
read
readline
rect
red
redim
refresh
rem
reset
return
rgb
right
say

second
seek
sin
size
sound
spritecollide
spritedim
spriteh
spritehide
spriteload
spritemove
spriteplace
spriteshow
spriteslice
spritev
spritew
spritex
spritey
stamp
step
string

system
tan
text
then
to
true
until
upper
volume
wavplay
wavstop
wavwait
while
white
write
writeline
xor
year
yellow

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix J: Error Numbers Page 353

Appendix J: Error Numbers

Error # Error Description (EN)

0 ERROR_NONE

1 ERROR_NOSUCHLABEL “No such label”

2 ERROR_FOR1
“Illegal FOR – start number > end
number”

3 ERROR_FOR2
“Illegal FOR – start number < end
number”

4 ERROR_NEXTNOFOR “Next without FOR”

5 ERROR_FILENUMBER “Invalid File Number”

6 ERROR_FILEOPEN “Unable to open file”

7 ERROR_FILENOTOPEN “File not open.”

8 ERROR_FILEWRITE “Unable to write to file”

9 ERROR_FILERESET “Unable to reset file”

10 ERROR_ARRAYSIZELARGE “Array dimension too large”

11 ERROR_ARRAYSIZESMALL “Array dimension too small”

12 ERROR_NOSUCHVARIABLE “Unknown variable”

13 ERROR_NOTARRAY “Not an array variable”

14 ERROR_NOTSTRINGARRAY “Not a string array variable”

15 ERROR_ARRAYINDEX “Array index out of bounds”

16 ERROR_STRNEGLEN “Substring length less that zero”

17 ERROR_STRSTART “Starting position less than zero”

18 ERROR_STREND
“String not long enough for given
starting character”

19 ERROR_NONNUMERIC
“Non-numeric value in numeric
expression”

20 ERROR_RGB
“RGB Color values must be in the range
of 0 to 255.”

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix J: Error Numbers Page 354

21 ERROR_PUTBITFORMAT “String input to putbit incorrect.”

22 ERROR_POLYARRAY
“Argument not an array for
poly()/stamp()“

23 ERROR_POLYPOINTS
“Not enough points in array for
poly()/stamp()“

24 ERROR_IMAGEFILE “Unable to load image file.”

25 ERROR_SPRITENUMBER “Sprite number out of range.”

26 ERROR_SPRITENA “Sprite has not been assigned.”

27 ERROR_SPRITESLICE “Unable to slice image.”

28 ERROR_FOLDER “Invalid directory name.”

29 ERROR_DECIMALMASK
“Decimal mask must be in the range of
0 to 15.”

30 ERROR_DBOPEN “Unable to open SQLITE database.”

31 ERROR_DBQUERY
“Database query error (message
follows).”

32 ERROR_DBNOTOPEN “Database must be opened first.”

33 ERROR_DBCOLNO “Column number out of range.”

34 ERROR_DBNOTSET “Record set must be opened first.”

35 ERROR_EXTOPBAD “Invalid Extended Op-code.”

36 ERROR_NETSOCK “Error opening network socket.”

37 ERROR_NETHOST “Error finding network host.”

38 ERROR_NETCONN “Unable to connect to network host.”

39 ERROR_NETREAD
“Unable to read from network
connection.”

40 ERROR_NETNONE
“Network connection has not been
opened.”

41 ERROR_NETWRITE
“Unable to write to network
connection.”

42 ERROR_NETSOCKOPT “Unable to set network socket options.”

43 ERROR_NETBIND “Unable to bind network socket.”

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix J: Error Numbers Page 355

44 ERROR_NETACCEPT “Unable to accept network connection.”

45 ERROR_NETSOCKNUMBER “Invalid Socket Number”

9999 ERROR_NOTIMPLEMENTED
“Feature not implemented in this
environment.”

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix J: Error Numbers Page 356

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix K: Glossary Page 357

Appendix K: Glossary

Glossary of terms used in this book.

algorithm – A step-by-step process for solving a problem.

angle – An angle is formed when two line segments (or rays) start at the
same point on a plane. An angle's measurement is the amount
of rotation from one ray to another on the plane and is typically
expressed in radians or degrees.

argument – A data value included in a statement or function call used to
pass information. In BASIC-256 argument values are not
changed by the statement or function.

array – A collection of data, stored in the computer's memory, that is
accessed by using one or more integer indexes. See also
numeric array, one dimensional array, string array, and
two dimensional array.

ASCII – (acronym for American Standard Code for Information Interchange)
Defines a numeric code used to represent letters and symbols
used in the English Language. See also Unicode.

asynchronous – Process or statements happening at one after the other.

Boolean Algebra – The algebra of true/false values created by Charles
Boole over 150 years ago.

Cartesian Coordinate System – Uniquely identify a point on a plane by a
pair of distances from the origin (0,0). The two distances are
measured on perpendicular axes.

column (database) – defines a single piece of information that will be
common to all rows of a database table.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix K: Glossary Page 358

constant – A value that can not be changed.

data structure – is a way to store and use information efficiently in a
computer system

database – An organized collection of data. Most databases are
computerized and consist of tables of similar information that are
broken into rows and columns. See also: column, row, SQL,
and table.

degrees – A unit of angular measure. Angles on a plane can have measures
in degrees of 0 to 360. A right angle is 90 degrees. See also
angle and radians.

empty string – A string with no characters and a length of zero (0).
Represented by two quotation marks (“”). See also string.

false – Boolean value representing not true. In BASIC-256 it is actually short
hand for the integer zero (0). See also Boolean Algebra and
true.

floating point number – A numeric value that may or may not contain a
decimal point. Typically floating point numbers have a range of
±1.7×10±308 with 15 digits of precision.

font – A style of drawing letters.

frequency – The number of occurrences of an event over a specific period
of time. See also hertz.

function – A special type of statement in BASIC-256 that may take zero or
more values, make calculations, and return information to your
program.

graphics output area – The area on the screen where drawing is
displayed.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix K: Glossary Page 359

hertz (hz) – Measure of frequency in cycles per second. Named for German
physicist Heinrich Hertz. See also frequency.

integer – A numeric value with no decimal point. A whole number.
Typically has a range of –2,147,483,648 to 2,147,483,647.

IP address – Short for Internet Protocol address. An IP address is a numeric
label assigned to a device on a network.

label – A name associated with a specific place in the program. Used for
jumping to with the goto and gosub statements.

list – A collection of values that can be used to assign arrays and in some
statements. In BASIC-256 lists are represented as comma (,)
separated values inside a set of curly-braces ({}).

logical error – An error that causes the program to not perform as
expected.

named constant – A value that is represented by a name but can not be
changed.

numeric array – An array of numbers.

numeric variable – A variable that can be used to store integer or floating
point numbers.

one dimensional array - A structure in memory that holds a list of data
that is addressed by a single index. See also array.

operator – Acts upon one or two pieces of data to perform an action.

pixel – Smallest addressable point on a computer display screen.

point – Measurement of text – 1 point = 1/72”. A character set in 12 point
will be 12/72” or 1/6” tall.

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix K: Glossary Page 360

port – A software endpoint number used to create and communicate on a
socket.

pseudocode – Description of what a program needs to do in a natural (non-
computer) language. This word contains the prefix “pseudo”
which means false and “code” for programming text.

radian - A unit of angular measure. Angles on a plane can have measures
in radians of 0 to 2π. A right angle is π/2 degrees. See also
angle and degrees.

radius – Distance from a circle to it's center. Also, ½ of a circle's diameter.

RGB – Acronym for Red Green Blue. Light is made up of these three colors.

row (database) – Also called a record or tuple. A row can be thought of as
a single member of a table.

socket – A software endpoint that allows for bi-directional (2 way) network
communications between two process on a single computer or
two computers.

sprite – An image that is integrated into a graphical scene.

SQL – Acronym for Structured Query Language. SQL is the most widely used
language to manipulate data in a relational database.

statement – A single complete action. Statements perform something and
do not return a value.

string – A sequence of characters (letters, numbers, and symbols). String
constants are surrounded by double quotation marks (“).

string array – An array of strings.

string variable – A variable that can be used to store string values. A
string variable is denoted by placing a dollar sign ($) after the

So You Want to Learn to Program?
© 2010 James M. Reneau.

Appendix K: Glossary Page 361

variable name.

sub-string – Part of a larger string.

subroutine – A block of code or portion of a larger program that performs a
task independently from the rest of the program. A piece that
can be used and re-used by many parts of a program.

syntax error – An error with the structure of a starement so that the
program will not execute.

synchronous – Happening at the same time.

table (database) – Data organized into rows and columns. A table has a
specific number of defined columns and zero or more rows.

transparent – Able to see through.

text output area – The area of the screen where plain text and errors is
displayed.

true – Boolean value representing not false. In BASIC-256 it is actually short
hand for the integer one (1). See also Boolean Algebra and
false.

two dimensional array – A structure in memory that will hold rows and
columns of data. See also array.

Unicode – The modern standard used to represent characters and symbols
of all of the world's languages as integer numbers.

variable – A named storage location in the computer's memory that can be
changed or varied.

So You Want to Learn to Program?
© 2010 James M. Reneau.

	Chapter 1: Meeting BASIC-256 – Say Hello.
	The BASIC-256 Window:
	Menu Bar:
	Tool Bar:
	Program Area:
	Text Output Area:
	Graphics Output Area:

	Your first program – The say statement:
	BASIC-256 is really good with numbers – Simple Arithmetic:
	Another use for + (Concatenation):
	The text output area - The print statement:
	What is a “Syntax error”:

	Chapter 2: Drawing Basic Shapes.
	Drawing Rectangles and Circles:
	Saving Your Program and Loading it Back:
	Drawing with Lines:
	Setting Individual Points on the Screen:

	Chapter 3: Sound and Music.
	Sound Basics – Things you need to know about sound:
	Numeric Variables:

	Chapter 4: Thinking Like a Programmer
	Pseudocode:
	Flowcharting:
	Flowcharting Example One:
	Flowcharting Example Two:

	Chapter 5: Your Program Asks for Advice.
	Another Type of Variable – The String Variable:
	Input – Getting Text or Numbers From the User:

	Chapter 6: Decisions, Decisions, Decisions.
	True and False:
	Comparison Operators:
	Making Simple Decisions – The If Statement:
	Random Numbers:
	Logical Operators:
	Making Decisions with Complex Results – If/End If:
	Deciding Both Ways – If/Else/End If:
	Nesting Decisions:

	Chapter 7: Looping and Counting - Do it Again and Again.
	The For Loop:
	Do Something Until I Tell You To Stop:
	Do Something While I Tell You To Do It:
	Fast Graphics:

	Chapter 8: Custom Graphics – Creating Your Own Shapes.
	Fancy Text for Graphics Output:
	Resizing the Graphics Output Area:
	Creating a Custom Polygon:
	Stamping a Polygon:

	Chapter 9: Subroutines – Reusing Code.
	Labels and Goto:
	Reusing Blocks of Code – The Gosub Statement:

	Chapter 10: Mouse Control – Moving Things Around.
	Tracking Mode:
	Clicking Mode:

	Chapter 11: Keyboard Control – Using the Keyboard to Do Things.
	Getting the Last Key Press:

	Chapter 12: Images, WAVs, and Sprites
	Images From a File:
	Playing Sounds From a WAV file:
	Moving Images - Sprites:

	Chapter 13: Arrays – Collections of Information.
	One-Dimensional Arrays of Numbers:
	Arrays of Strings:
	Assigning Arrays:
	Sound and Arrays:
	Graphics and Arrays:
	Advanced - Two Dimensional Arrays:
	Really Advanced - Array Sizes:
	Really Really Advanced - Resizing Arrays:

	Chapter 14: Mathematics – More Fun With Numbers.
	New Operators:
	Modulo Operator:
	Integer Division Operator:
	Power Operator:
	New Integer Functions:
	New Floating Point Functions:
	Advanced - Trigonometric Functions:
	Cosine:
	Sine:
	Tangent:
	Degrees Function:
	Radians Function:
	Inverse Cosine:
	Inverse Sine:
	Inverse Tangent:

	Chapter 15: Working with Strings.
	The String Functions:
	String() Function:
	Length() Function:
	Left(), Right() and Mid() Functions:
	Upper() and Lower() Functions:
	Instr() Function:

	Chapter 16: Files – Storing Information For Later.
	Reading Lines From a File:
	Writing Lines to a File:
	Read() Function and Write Statement:

	Chapter 17: Stacks, Queues, Lists, and Sorting
	Stack:
	Queue:
	Linked List:
	Slow and Inefficient Sort - Bubble Sort:
	Better Sort – Insertion Sort:

	Chapter 18 – Runtime Error Trapping
	Error Trap:
	Finding Out Which Error:
	Turning Off Error Trapping:

	Chapter 19: Database Programming
	What is a Database:
	The SQL Language:
	Creating and Adding Data to a Database:
	Retrieving Information from a Database:

	Chapter 20: Connecting with a Network
	Socket Connection:
	A Simple Server and Client:
	Network Chat:

	Appendix A: Loading BASIC-256 on your PC or USB Pen Drive
	1 – Download:
	2 – Installing:
	3 – Starting BASIC-256

	Appendix B: Language Reference - Statements
	circle – Draw a Circle on the Graphics Output Area (2)
	changedir – Change Your Current Working Directory (16)
	clg – Clear Graphics Output Area (2)
	clickclear – Clear the Last Mouse Click (10)
	close – Close the Currently Open File (16)
	cls – Clear Text Output Window (1)
	color or colour– Set Color for Drawing (2)
	dbclose (19)
	dbcloseset (19)
	dbexecute (19)
	dbopen (19)
	dbopenset (19)
	decimal ()
	dim – Dimension a New Array (13)
	do / until – Do / Until Loop (7)
	end – Stop Running the Program (9)
	fastgraphics – Turn Fast Graphics Mode On (8)
	font – Set Font, Size, and Weight (8)
	for/next – Loop and Count (7)
	goto – Jump to a Label (9)
	gosub/return – Jump to a Subroutine and Return (9)
	graphsize – Set Graphic Display Size (8)
	if then – Test if Something is True - Single Line(6)
	if then / end if – Test if Something is True – Multiple Line (6)
	if then / else / end if – Test if Something is True – Multiple Line with Else (6)
	imgload – Load an image from a file and display (12)
	input – Get a String Value from the User (7)
	kill – Delete a File ()
	line – Draw a Line on the Graphics Output Area (2)
	netclose (20)
	netconnect (20)
	netlisten (20)
	netwrite (20)
	offerror (18)
	onerror (18)
	open – Open a file for Reading and Writing (16)
	pause – Pause the Program (7)
	plot – Put a Point on the Graphics Output Area (2)
	poly – Draw a Polygon on the Graphics Output Area (8)
	print – Display a String on the Text Output Window (1)
	putslice – Display a Captured Part of the Graphics Output
	rect – Draw a Rectangle on the Graphics Output Area (2)
	redim – Re-Dimension an Array (12)
	refresh – Update Graphics Output Area (8)
	rem – Remark or Comment (2)
	reset – Clear an Open File (16)
	say – Use Text-To-Speech to Speak (1)
	seek – Move the File I/O Pointer (16)
	spritedim – Initialize Sprites for Drawing (12)
	spritehide – Hide a Sprite (12)
	spriteload – Load an Image File Into a Sprite (12)
	spritemove – Move a Sprite from Its Current Location (12)
	spriteplace – Place a Sprite at a Specific Location (12)
	spriteshow – Show a Sprite (12)
	spriteslice – Capture a Sprite (12)
	sound – Play a beep on the PC Speaker (3)
	stamp – Put a Polygon Where You Want It (8)
	system – Execute System Command in a Shell
	text – Draw text on the Graphics Output Area (8)
	volume – Adjust Amplitude of Sound Statement
	wavplay – Play a WAV audio file in the background (12)
	wavstop – Stop playing WAV audio file (12)
	wavwait – Wait for the WAV to finish (12)
	while / end while – While Loop (7)
	write – Write Data to the Currently Open File (16)
	writeline – Write a Line to the Currently Open File (16)

	Appendix C: Language Reference - Functions
	abs – Absolute Value (14)
	acos – Return the Arc-cosine (14)
	asc – Return the Unicode Value for a Character (11)
	asin – Return the Arc-sine (14)
	atan – Return the Arc-tangent (14)
	ceil – Round Up (14)
	chr – Return a Character (11)
	clickb- Return the Mouse Last Click Button Status (10)
	clickx- Return the Mouse Last Click X Position (10)
	clicky- Return the Mouse Last Click Y Position (10)
	cos – Cosine (14)
	currentdir – Current Working Directory (16)
	day – Return the Current System Clock – Day (9)
	dbfloat – Get a Floating Point Value From a Database Set (19)
	dbint – Get an Integer Value From a Database Set (19)
	dbrow – Advance Database Set to Next Row (19)
	dbstring – Get a String Value From a Database Set (19)
	degrees – Convert a Radian Value to a Degree Value (14)
	eof – Allow Program to Check for End Of File Condition (16)
	exists – Check to See if a File Exists (16)
	float – Convert a String Value to A Float Value (14)
	floor – Round Down (14)
	getcolor – Return the Current Drawing Color
	getslice – Capture Part of the Graphics Output
	graphheight – Return the Height of the Graphic Display (8)
	graphwidth – Return the Width of the Graphic Display (8)
	hour – Return the Current System Clock - Hour (9)
	instr – Return Position of One String in Another (15)
	int – Convert Value to an Integer (14)
	key – Return the Currently Pressed Keyboard Key (11)
	lasterror – Return Last Error (18)
	lasterrorextra – Return Last Error Extra Information(18)
	lasterrorline – Return Program Line of Last Error (18)
	lasterrormessage – Return Last Error as String (18)
	left – Extract Left Sub-string (15)
	length – Length of a String (15)
	lower – Change String to Lower Case (15)
	mid – Extract Part of a String (14)
	minute - Return the Current System Clock - Minute (9)
	month - Return the Current System Clock - Month (9)
	mouseb- Return the Mouse Current Button Status (10)
	mousex- Return the Mouse Current X Position (10)
	mousey- Return the Mouse Current Y Position (10)
	netaddress – What Is My IP Address (20)
	netdata – Is There Network Data to Read (20)
	netread – Read Data from Network(20)
	pixel – Get Color Value of a Pixel
	radians – Convert a Degree Value to a Radian Value (16)
	rand – Random Number (6)
	read – Read a Token from the Currently Open File (16)
	readline – Read a Line of Text from a File (16)
	rgb – Convert Red, Green, and Blue Values to RGB (12)
	right – Extract Right Sub-string (15)
	second - Return the Current System Clock - Second (9)
	sin – Sine (16)
	size – Return the size of the open file (15)
	spritecollide – Return the Collision State of Two Sprites (12)
	spriteh – Return the Height of Sprite (12)
	Spritev – Return the Visible State of a Sprite (12)
	spritew – Return the Width of Sprite (12)
	spritex – Return the X Position of Sprite (12)
	spritey – Return the Y Position of Sprite (12)
	string – Convert a Number to a String (14)
	tan – Tangent (16)
	upper – Change String to Upper Case (15)
	year - Return the Current System Clock - Year (9)

	Appendix D: Language Reference – Operators and Constants
	Mathematical Operators:
	Mathematical Constants or Values:
	Color Constants or Values:
	Logical Operators:
	Logical Constants or Values:

	Appendix E: Color Names and Numbers
	Appendix F: Musical Tones
	Appendix G: Key Values
	Appendix H: Unicode Character Values – Latin (English)
	Appendix I: Reserved Words
	Appendix J: Error Numbers
	Appendix K: Glossary

